NIMCET 2016 QUESTION PAPER

SECTION - I

QUANTITATIVE ABILITY AND ANALYTICAL REASONING

1.	and four females. Out o	f the children F and G ar	e girls. A and D are broth	three children, three males are and A is a doctor. E is an ded to D and G is their child.
	(1) E's daughter	(2) A's son	(3) G's brother	(4) F's father
2.		en at least one of ${ m Q}$ and ${ m I}$ h ${ m Q}$ and ${ m R}$ are true	R is false. Then it follows	and R is true, then S is false
build	ling but not necessarily	in the same order. The	· · · · · · · · · · · · · · · · · · ·	on eight different floors of a uilding is numbered one, the eight.
(a) (b) (c) (d) (e) (f) (g) (h) (i)	J lives on floor numbered six. Only one person lives between J and L. O lives on the floor immediately below L. Only one person lives between O and P. O lives above P. K lives on an even numbered floor but not on the floor numbered two. Two persons live between K and Q. Q does not live on the lower most floor. N lives on one of the floors above Q.			
3.	Which of the following is true about M? (1) K lives immediately above M (3) M lives on an odd numbered floor. (2) Only two people live between M and Q (4) M lives on the lower most floor.			
4.	Who amongst the follow (1) P	ving lives on the floor nur (2) O	mber eight? (3) K	(4) Cannot be determined
5.		our are alike in a certain owing does not belong to (2) MQ		arrangement and thus form a (4) OM
6.	If P and L interchange to (1) O	their places, who will live (2) L	e between P and M? (3) J	(4) No one
7.	If the English word 'EX be coded as: (1) 7655955552	XAMINATION' is coded at (2) 7645954552	as 56149512965, then the (3) 7645954452	e word 'GOVERNMENT' can (4) 7644956552
8.			family has as many siste y brothers and sisters are (3) 6 and 3	ers as brothers, but each girl there? (4) 4 and 3
9.			tasty', '478' means 'see gorical symbols stand for 'se (3) 8	ood pictures' and '729' means e'? (4) 1

Directions for questions 10 to 12: A team must be selected from the ten probable players A, B, C, D, E, F, G, H, I and J. Of these, A, C, E and J are forwards, B, G and H are point guards and D, F and I are defenders.

defe	nders.				
(a) (b) (c) (d) (e) (f) (g) (h) (i)	The team must have at least one forward, one point guard and one defender. If the team includes J, it must also include F. The team must include E or B, but not both. If the team includes G, it must also include F. The team must include exactly one among C, G and I. C and F cannot be members of the same team. D and H cannot be members of the same team. The team must include both A and D or neither of them. There is no restriction on the number of members in the team.				
10.	What could be the max (1) 4	imum size of the team th	at includes G? (3) 6	(4) More than 6	
11.	What would be the size (1) 7	of the largest possible te (2) 6	eam? (3) 5	(4) 4	
12.	Which of the following (1) A	cannot be included in a to	eam of size 6?	(4) E	
13.	_		or a group photo session. If the following number of (3) 5	Each row contains three less rows is not possible? (4) 6	
14.				that the number of sweets er of children in the group is (4) 15	
15.	The number of commor is (1) 28	n terms in the two sequences (2) 39	nces 17, 21, 25,, 8.	17 and 16, 21, 26,, 85. (4) 87	
16. Fact 1: Most stuffed toys are stuffed with beans. Fact 2: There are stuffed bears and stuffed tigers. Fact 3: Some chairs are stuffed with beans.					
	If the above statements	are fact, which of the fol	llowing statements must	also be a fact?	
	 Only children's chair All stuffed tigers are Stuffed monkeys are 				
	(1) 1 is a fact(3) Both 2 and 3 are fac	ets	(2) Only 2 is a fact(4) None of the stateme	nts 1, 2, 3 are true	

	ections for questions follow.	17 to 19: Read the follow	wing information careful	y and answer the questions	
(b) (c) (d)	Eleven students, A, B, C, D, E, F, G, H, I, J and K are sitting in the first row of the class facing the teacher. D who is to the immediate left of F is second to the right of C A is second to the right of E, Who is at one of the ends. J is the immediate neighbour of A and B and third to the left of G. H is to the immediate left of D and third to the right of I.				
17.	Who is sitting in the mi (1) B		(3) G	(4) I	
18.	If E and D, C and B, A students are sitting at t (1) D and E		change their positions, w	hich of the following pairs of (4) K and F	
19.	Which of the following § (1) CHDE	groups of friends is sitting (2) CHDF	g to the right of G? (3) IBJA	(4) None of these	
20.	The day after the day at (1) Monday	fter tomorrow is four days (2) Tuesday	s after Monday. What day (3) Wednesday	v is it today? (4) Thursday	
orar	nge when ordered 'Two',	one apple when ordered	"Three" and is asked to t	ango when ordered 'One', one ake out from the basket one 332142314223314113234.	
21.	How many total orange (1) 1	s were in the basket at th (2) 4	te end of the above sequer (3) 3	nce? (4) 2	
22.	How many total fruits v (1) 9	vill be in the basket at the (2) 8	e end of the above order s (3) 11	equence? (4) 10	
23.		ters are there in the workere are between them in the (2) Two		ave as many letters between me order? (4) Four	
24.		mber in the series 4, 7, 11 (2) 77	., 18, 29, 47,, 1 (3) 86	23, 199? (4) 87	
Dir	ections for questions 2	5 to 27: Read the inform	ation carefully and answe	er the questions that follow.	
(a)	A, B, C, D, E and F are	six members in a family i	n which there are two ma	arried couples.	
(b)	D is brother of F.				
(c)	Both D and F are lighter than B.				
(d)	B is mother of D and lighter than E				
(e)	C a lady, is neither hear	viest nor lightest in the fa	amily.		
(f)	E is lighter than C.				
(g)	The grandfather in the	family is the heaviest.			
25 .	Which of the following i (1) AB	s a pair of married couple (2) BC	es? (3) AD	(4) BE	

(1) C		26. Who among the following will be in the second place if all the members in the family descending order of their weights?		
	(2) A	(3) D	(4) Data inadequate	
How is C related to D? (1) Grandmother	(2) Cousin	(3) Sister	(4) Mother	
when the clock indicates	s 10 p.m. on the 3 rd day?		What will be the correct time (4) 12 p.m.	
ections for the question	-	_	· · · -	
The houses are of different All the houses are of different T, the tallest house is expected to the shortest house is expected. U, the orange coloured has the yellow coloured has Q, the green coloured has the property of t	ent colours — red, blue, graferent heights. Exactly opposite to the red cactly opposite to the gree house is located between a louse is exactly opposite to use is exactly opposite to the exactly opp	reen, orange, yellow and v coloured house. en coloured house. P and S. o P.	vhite.	
Which is the second larg (1) Q	gest house? (2) R	(3) S	(4) Cannot be determined	
Which is the second sho (1) P	rtest house? (2) R	(3) S	(4) Cannot be determined	
What is the coloured of (1) Red	the tallest house? (2) Blue	(3) Green	(4) Yellow	
		d find the odd one. (3) ALPEP	(4) AUVAG	
A bus starts from its dealight and 10 board the	pot filled to seating capac bus. At point B, 1/5 th of	the passengers alight and	d 3 board the bus. At point C	
type. Native of type 'Yes ask only questions the results of the re	s' ask only questions the right answer to which is '?' While the "No" type vesed on your visit to the is prothers from the island.	right answer to which is No'. For example the 'Yes vill ask questions like "I land Kha-Kha.	'Yes' while those of type 'No s' type will ask questions like s 2 plus 2 equal to 5?". The	
	Raman was born on Matook birth, the Republic (1) Sunday A clock is set right at a when the clock indicates (1) 11 p.m. A ctions for the question w. There are six houses P, The houses are of differ All the houses are of differ All the houses are of differ All the house is exity. The shortest house is exity the green coloured has perfectly the white coloured has the polynomial of the which is the second large (1) Q Which is the second should be alight and 10 board the which is the last stop, and (1) 96 Kha-kha is an obscure type. Native of type 'Ye ask only questions the result of the polynomial of the whole is the last stop, and (1) ye ask only question is bakevin and Kumar are be a you can conclude that (1) Kevin is 'No', Kuman and Kumar are be a you can conclude that (1) Kevin is 'No', Kuman and Kumar are be a you can conclude that (1) Kevin is 'No', Kuman and Kumar are be a you can conclude that (1) Kevin is 'No', Kuman and Kumar are be a you can conclude that (1) Kevin is 'No', Kuman and Kumar are be a you can conclude that (1) Kevin is 'No', Kuman and Kumar are be a you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and Kumar are be you can conclude that (1) Kevin is 'No', Kuman and You can conclude that (1) Kevin is 'No', Kuman and You can conclude that (1) Kevin is 'No', Kuman and You can conclude that (1) Kevin i	Raman was born on March 5, 1970 Lakshman of took birth, the Republic Day fell on Monday. What (1) Sunday (2) Monday A clock is set right at 5 a.m. The clock looses 1 when the clock indicates 10 p.m. on the 3rd day? (1) 11 p.m. (2) 10: 45 p.m. Rections for the questions 30 to 32: Read the w. There are six houses P, Q, R, S, T and U, three or The houses are of different colours – red, blue, gradle the houses are of different heights. T, the tallest house is exactly opposite to the red The shortest house is exactly opposite to the gree U, the orange coloured house is located between R, the yellow coloured house is exactly opposite to P, the white coloured house is exactly opposite to P, the white coloured house is taller than R, but which is the second largest house? (1) Q (2) R Which is the second shortest house? (1) P (2) R What is the coloured of the tallest house? (1) Red (2) Blue Unscramble the letters in the following words and (1) ONGEAR (2) NOONI A bus starts from its depot filled to seating capacalight and 10 board the bus. At point B, 1/5th of which is the last stop, all the 55 passengers alight (1) 96 (2) 99 Kha-kha is an obscure island which is inhabited type. Native of type 'Yes' ask only questions the ask only questions the right answer to which is 'Ts 2 plus 2 equal to 4?" While the "No" type ver following question is based on your visit to the is Kevin and Kumar are brothers from the island.	Raman was born on March 5, 1970 Lakshman was born 25 days before took birth, the Republic Day fell on Monday. What is the day of birth of La (1) Sunday (2) Monday (3) Wednesday A clock is set right at 5 a.m. The clock looses 16 minutes in 24 hours. We when the clock indicates 10 p.m. on the 3rd day? (1) 11 p.m. (2) 10: 45 p.m. (3) 11: 15 p.m. excitions for the questions 30 to 32: Read the information carefully an extition. The houses are of different colours – red, blue, green, orange, yellow and wall the houses are of different colours – red, blue, green, orange, yellow and wall the houses are of different heights. The tallest house is exactly opposite to the red coloured house. The shortest house is exactly opposite to the green coloured house. U, the orange coloured house is located between P and S. R., the yellow coloured house is exactly opposite to P. Q. the green coloured house is exactly opposite to U. P, the white coloured house is taller than R, but shorter than S and Q. Which is the second largest house? (1) Q (2) R (3) S Which is the second shortest house? (1) P (2) R (3) Green Unscramble the letters in the following words and find the odd one. (1) ONGEAR (2) MOONI (3) ALPEP A bus starts from its depot filled to seating capacity. It stops at a point A alight and 10 board the bus. At point B, 1/5th of the passengers alight and which is the last stop, all the 55 passengers alight. The capacity of the bus (1) 96 (2) 99 (3) 66 Kha-kha is an obscure island which is inhabited by two types of people: type. Native of type 'Yes' ask only questions the right answer to which is 'No'. For example the 'Yes' Ts 2 plus 2 equal to 4?" While the "No" type will ask questions like "I following question is based on your visit to the island Kha-Kha. Kevin and Kumar are brothers from the island. Kumar asks you. Is at le You can conclude that (1) Kevin is 'No', Kumar is 'Yes' (2) Both are 'Yes'	

Directions for questions 36 to 39: Read the information carefully and answer the questions that follow.

- (a) A group of six friends are sitting around a hexgonal table, each one at one corner of the hexagon.
- (b) Ram is sitting opposite to Ramesh.
- (c) Jyoti is sitting next to Seema.
- (d) Neeta is sitting opposite to Seema but not next to Ram.
- (e) Amrit has a person sitting between Ramesh and himself.
- **36.** If Neeta sits to the right of Amrit, then who is sitting to the left of Amrit?
 - (1) Ramesh
- (2) Neeta
- (3) Jyoti
- (4) Ram

- **37.** Who is sitting between Amrit and Ramesh?
 - (1) Neeta
- (2) Jyoti
- (3) Seema
- (4) Ram

- **38.** Who is sitting opposite to Jyoti?
 - (1) Ramesh
- (2) Neeta
- (3) Amrit
- (4) Seema
- 39. If Seema and Jyoti mutually interchange their positions, then who will be sitting opposite to Neeta?
 - (1) Jyoti
- (2) Ram
- (3) Seema
- (4) Ramesh
- **40.** If all the 6's are replaced by 9's, then the algebraic sum of all the numbers from 1 to 100 (both inclusive), varies by
 - (1) 333
- $(2)\ 300$

(3)279

(4) 330

SECTION-II

COMPUTER AWARENESS

41.	The 2's complement	representation	of the number	$(-100)_{10}$	in an 8 bit	computer is
------------	--------------------	----------------	---------------	---------------	-------------	-------------

 $(1)\ 10011011$

(2) 01100100

(3) 11100100

(4) 10011100

42. The number of terms in the product of sums canonical form of
$$\overline{[(x_1+x_2)\overline{(x_3x_4)}]}$$
 is

(1) 7

(2) 8

(3)9

(4) 10

(1) HTTP

(2) FCFS

(3) HTML

(4) TCP/IP

44. Consider a hard disk with 16 recording surfaces (0-15) having 16384 cylinders (0-16383) and each cylinder contains 64 sectors (0-63). Data storage capacity in each sector is 512 bytes. Data are organized cylinder-wise and the addressing format is < cylinder no., surface no., sector no., >. A file of size 42797 KB is stored in the disk and the starting disk location of the file is < 1200, 9, 40>. What is the cylinder number of the last sector of the file, if it is stored in a contiguous manner?

(1) 1284

(2) 1282

(3) 1286

(4) 1288

45. Consider the following minterm expression for F.

 $F(P,Q,R,S) = \sum_{i=1}^{n} 0, 2, 5, 7, 8, 10, 13, 15$

The minterms 2, 7, 8 and 13 are 'do not care' terms. The minimal sum of products form for F is

(1) $Q\overline{S} + \overline{Q}S$

(2) $QS + \overline{QS}$

(3) $\overline{QRS} + \overline{QRS} + \overline{QRS} + \overline{QRS}$

(4) $\overline{PQS} + \overline{PQS} + \overline{PQS} + \overline{PQS}$

46. Consider the equation $(43)_x = (y3)_8$ where x and y are unknown. The number of possible solutions is

(1) 4

(2)6

 $(3)\ 5$

(4) 7

47. Subtract $(1010)_2$ from $(1101)_2$ using first complement

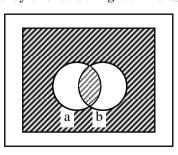
 $(1) (1100)_{2}$

 $(2) (0101)_2$

(3) (1001)₂

 $(4) (0011)_2$

48. A hard disk has a rotational speed of 6000 rpm. Its average latency time is


(1) $5 \times 10^{-3} \text{ sec}$

 $(2)\ 0.05\ sec$

 $(3)\ 1\ sec$

 $(4) 0.5 \sec$

49. The Boolean expression represented by the following Venn diagram is

(1) a XOR b

(2) a'b + ab'

(3) ab + a'b'

(4) (a+b')(a'+b)

50. The range of n-bit signed magnitude representation is

(1) 0 to $2^n - 1$

 $(2) - (2^{n-1} - 1)$ to $(2^{n-1} - 1)$

 $(2) - (2^n - 1)$ to $(2^n - 1)$

(3) 0 to $2^{n-1}-1$

SECTION-III

HIGHER MATHEMATICS

51. If a twelve sided regular polygon is inscribed in a circle of radius 3 centimeters, then the length of each side of the polygon is

(1) 3

(2) $18 - 9\sqrt{3}$

(3) $18 + 9\sqrt{3}$

(4) $\sqrt{18-9\sqrt{3}}$

52. If C is the midpoint of AB and P is any point outside AB, then

(1) $\overline{PA} + \overline{PB} = 2\overline{PC}$

(2) $\overline{PA} + \overline{PB} = \overline{PC}$

(3) $\overline{PA} + \overline{PB} + 2\overline{PC} = \vec{0}$ (4) $\overline{PA} + \overline{PB} + \overline{PC} = \vec{0}$

The average marks of boys in class is 52 and that of girls is 42. The average marks of boys and girls combined is 50. The percentage of boys in the class is

(1)80%

(2) 60%

(3) 40%

(4) 20%

The number of 5 people groups that can be selected from 9 people when two particular persons are not **54.** to be in the same group is

(1) 126

 $(2)\ 35$

(3)91

(4) 252

The solution set of equation $\log_x 2 \log_{2x} 2 = \log_{4x} 2$ is

(1) $\left\{2^{-\sqrt{2}}, 2^{\sqrt{2}}\right\}$

 $(2) \{1/2, 2\}$

(3) $\{1/4, 2^2\}$

The equation of a circle with diameters are 2x - 3y + 12 = 0 and x + 4y - 5 = 0 and area of 154 sq. units

(1) $x^2 + y^2 - 6x + 4y - 36 = 0$

(2) $x^2 + y^2 + 6x - 4y - 36 = 0$

(2) $x^2 + v^2 - 6x - 4v + 25 = 0$

(4) None of the above

57. $\int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} dx \text{ is equal to}$ $(1) \frac{\sqrt{2x^4 - 2x^2 + 1}}{x^2} + C \qquad (2) \frac{\sqrt{2x^4 - 2x^2 + 1}}{x^3} + C \qquad (3) \frac{\sqrt{2x^4 - 2x^2 + 1}}{x} + C \qquad (4) \frac{\sqrt{2x^4 - 2x^2 + 1}}{2x^2 + C}$

58. If \vec{a}, \vec{b} and $\vec{a} + \vec{b}$ are vectors of magnitude α then the magnitude of the vector $\vec{a} - \vec{b}$ is

(1) $\sqrt{2}\alpha$

 $(4) 3\alpha$

A box contains 2 blue caps, 4 red caps, 5 green caps and 1 yellow cap. If four caps are picked at random, the probability that none of them is green is

(1) 7/99

(2) 7/12

(4) 5/12

60. The line 3x + 5y = k touches the ellipse $16x^2 + 25y^2 = 400$ if *k* is

(1) $\pm \sqrt{5}$

 $(4) \pm \sqrt{35}$

61. If $X = \{4^n - 3n - 1, n \in N\}$ and $Y = \{9n - 9, n \in N\}$, then $X \cup Y$ is equal to

(4) None of these

62. $\int \left\{ \frac{(\log x - 1)^2}{1 + (\log x)^2} \right\}^2 dx$ is equal to

(1) $\frac{xe^x}{1+x^2} + C$ (2) $\frac{x}{(\log x)^2 + 1} + C$ (3) $\frac{\log x}{(\log x)^2 + 1} + C$ (4) $\frac{x}{x^2 + 1} + C$

63.	The volume of the par (1) 21	allelepiped determined by (2) 22	y u = i + 2j - k, v = -2i + 3 (3) 23	3k and w = $7j - 4k$ is (4) 24
64.	The vector perpendicute (1) $6i + 6k$	llar to the plane passing to (2) $6\overline{i} + 7\overline{k}$	hrough $(1, -1, 0)$ $(2, 1, -1)$ $(3) 7\bar{i} + 6\bar{k}$	
65.	assumes the least valu			tion $x^2 - (a-2)x - (a+1) = 0$,
	(1) 3	(2) 2	(3) 0	(4) 1
66.	simultaneously with a	probability 0.3, then $P(A)$	A') + P(B') is	occur is 0.6. If A and B occur
	$(1) \ 0.9$	(2) 1.15	(3) 1.1	(4) 1.0
67.		B are having m and n elements of subsets of the section (2) 6, 3		of subsets of the first set is 56 and n are (4) 8 , 7
68.	(1) $2 \in A \cup B$ implies (2) $\{2,3\} \subseteq A$ implies to	g statements is FALSE? that if $2 \notin A$ then $2 \in B$. hat $2 \subseteq A$ and $3 \subseteq A$ blies that $\{2, 3\} \subseteq A$ and $\{3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$	$2,3\}\subseteq B.$	
	(4) $2 \in A$ and $3 \in A$ in	nplies that $\{2,3\} \subseteq A$.		- A
69.	If $2x^2 + 7xy + 3y^2 + 8x$ (1) 2	$x + 14y + \lambda = 0$ represents (2) 4	a pair of straight lines, th	e value of λ is (4) 8
70	The area of the region	bounded by the lines $y =$	x = 1 and $ x = 2$ $ x = 10$	
70.	(1) 3 sq. units	(2) 4 sq. units	(3) 6 sq. units	(4) 2 sq. units
	IICA			-
71.	In a triangle ABC, a =	4 , b = 3, $\angle BAC = 60^{\circ}$, th	en the equation for which	c is the root, is
	$(1) c^2 + 3c + 7 = 0$	$(2) c^2 + 3c - 7 = 0$	$(3) c^2 - 3c + 7 = 0$	$(4) c^2 - 3c - 7 = 0$
72.	If $\cos\theta = \frac{5}{13}, \frac{3\pi}{2} < \theta < 2$	π , then $ an 2 heta$ is		
	(1) $\frac{-120}{119}$	(2) $\frac{-120}{169}$	(3) $\frac{119}{169}$	$(4) \ \frac{120}{119}$
				110
73.				wo non-empty events of the nust have so that A and B are
	(1) 2, 4 or 8	(2) 3, 6 or 9	(3) 4 or 8	(4) 5 or 10
74.				f the vector $\vec{a} + 2\vec{b}$ is collinear
	→	ollinear with \vec{a} , then $\vec{a} + \vec{a}$		(1) o
	(1) λa	(2) $\lambda \vec{b}$	(3) λc	(4) $\vec{0}$
75. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied frevertical pole to the ground. Find the height of the pole, if the angle made by the rope level is 30°.				_
	(1) 10 m	(2) 20 m	(3) 30 m	(4) 40 m
	KINGS—			-8-

Orbit Mall, Near Civil Lines Metro Station, Ajmer Road, Jaipur. Visit us: www.kingseducation.in

76.			n marked on the circum total number of points is (3) 66	ference of a circle. If the point 15 (4) 70
77.	Let $S = \{1, 2,, n\}$ is	. The number of possible	e pairs of the form (A, B)	with $A \subseteq B$ for subsets A, B of S
	(1) 2 ⁿ	(2) 3^n	(3) n!	$(4) \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}$
7 8.	The probability that	at A speaks truth is $\frac{4}{5}$ v	while this probability for	B is $\frac{3}{4}$. The probability that they
		er when asked to speak of (2) 1/5		(4) 4/5
79 .	The sum of the exp	ression $\frac{1}{\sqrt{1+\sqrt{2}}} + \frac{1}{\sqrt{2+\sqrt{2}}}$	$\frac{1}{3} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{80} + \sqrt{10}}$	$\frac{1}{\sqrt{21}}$ is
	(1) 7	$\begin{array}{ccc} \sqrt{1+\sqrt{2}} & \sqrt{2+\sqrt{2}} \\ (2) & 8 \end{array}$		(4) 10
80.				array}{ l }{ x^2 } - 1, x < mber x. If f is continuous at $x = 3$
	(1) 8	(2) 3/4	(3) 1/8	(4) 4/3
81.				the houses. Each applies for one oply for the same house is (4) 1/9
82.		a race. Mr A selects two ty that Mr A selected the (2) 1/5		and bets one of them will win the
83.	If $3^x = 4^{x-1}$, then x (1) $\frac{2 - \log_3 2}{2 \log_3 2 - 1}$		(3) $\frac{2 - \log_3 2}{2 \log_3 2 + 1}$	$(4) \; \frac{2\log_3 2}{2\log_2 2 - 1}$
	$2\log_3 2 = 1$	$(2) \frac{2}{2\log_3 2 - 1}$	$2\log_3 2+1$	$2\log_3 2-1$
84.		rows and $(x + 5)$ column d BA exist, then the value (2) 3, 5		rows and $(11 - y)$ columns. If both (4) 8, 5
Q E		its in $(-\infty, \infty)$, for which	, ,	(2) 3, 3
85.	(1) 6	(2) 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4) 0
86.		-		ways can they be arranged in the f same category are put together? (4) 360
87.				nd another population B has 100 the two populations respectively
	(1) 9/4	(2) 4/9	(3) 1	(4) 2/3
	% KINGS-			-9-

88.	Sum of the roots of the α (1) 5	equation $4^x - 3(2^{x+3}) + 12$ (2) 6	8 = 0 is (3) 7	(4) 8
89.	If the sum of the slopes value of c is	s of the lines given by x^2	$x^2 - 2cxy - 7y^2 = 0$ is four t	imes their product, then the
	(1) 1	(2)-1	(3) -2	(4) 2
90.	The system of equations (1) $b = c$	x + y + 2z = a, x + z = b, (2) $c = a + b$		tion if (4) $a = b = c$
91.	c = 35, then the global n	minimum value of $f(x)$ is		me numbers as roots and b +
	$(1)^{-183}/4$	(2) $\frac{173}{16}$	(3) - 81/4	$(4) \frac{17}{2}$
92.	The vertex of the parabo	ola whose focus is (-1, 1)	and directrix is 4x + 3y -2	24 = 0 is
	$(1)\left(0,\frac{3}{2}\right)$	$(2)\left(0,\frac{5}{2}\right)$	$(3)\left(1,\frac{3}{2}\right)$	$(4)\left(1,\frac{5}{2}\right)$
93.	The value of $\cos 20^{\circ} + \cot 20^{\circ}$	os 100° + cos 140° is		
	(1) 0	$(2) \frac{1}{\sqrt{2}}$	(3) $\frac{1}{2}$	(4) 1
94.	permutations are just b	a, b, c, d, e, f, g) are li efore and just after the p (2) agfedcb and badcefg	ermutation bacdefg?	der. Which of the following (4) agfedcb and bacdegf
95.	The foci of the ellipse $\frac{3}{1}$	$\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyper	rbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coinc	cide. Then the value of b^2 is (4) 1
	(1) 5	(2) 7	(3) 9	(4) 1
			$\hat{\boldsymbol{z}} \times (2\hat{\boldsymbol{i}} + 3\hat{\boldsymbol{j}} + 4\hat{\boldsymbol{k}}) = (2\hat{\boldsymbol{i}} + 3\hat{\boldsymbol{j}} +$	$(4\hat{k})\times\vec{b}$ then a possible value
	of $(\vec{a} + \vec{b})(-7\hat{i} + 2\hat{j} + 3\hat{k})$ i	is the state of th		
	of $(\vec{a} + \vec{b})(-7\hat{i} + 2\hat{j} + 3\hat{k})$ if (1) 0	(2) 3	(3) 4	(4) 8
97.	Let $x_1, x_2,, x_n$ be $n \in$	observations such that \sum	$\sum x_i^2 = 400 \text{and} \sum x_i = 80$. Then a possible value of n
	among the following is (1) 10	(2) 15	(3) 20	(4) 8
98.	Area of the greatest rec	tangle that can be inscrib	ed in the ellipse is	
	(1) \sqrt{ab}	(2) 2ab	(3) ab	(4) a/b
99.	Two common tangents to (1) $x = \pm (y + 2a)$	to the circle $x^2 + y^2 = 2a^2$ (2) $y = \pm (x + 2a)$		re $(4) y = \pm (x+a)$
			$(a_2 a_2 a_3 a_4 a_5 a_5$,) (1 1 1)
100.		. P. and $a_1 = 0$, then the	value of $\left(\frac{a_3}{a_2} + \frac{a_4}{a_3} + \dots + \frac{a_4}{a_n}\right)$	$\left(\frac{b_n}{a_{n-1}}\right) - a_2 \left(\frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_{n-2}}\right)$
	is equal to	1	(2)	1
	$(1) (n-2) + \frac{1}{(n-2)}$	(2) $\frac{1}{n-2}$	(3) $n-2$	(4) $n - \frac{1}{n-2}$

-10-

KINGS-

SECTION-IV

GENERAL ENGLISH

Question 101 to 104 are based on the following:

While cement is the basic raw material for producing cement tiles and cement paint which are used extensively in building construction. The main consumers of white cement are therefore, cement tile and cement paint of a significant increase in the price of white cement during a short period. The present annual licensed production capacity of white and grey cement in the country is approximately 3.5 lakh tonnes. The average demand is 2-2.5 lakh tonnes. This means that there is idle capacity to the tune of one lakh tonnes or more. The price rise is, therefore, not a phenomenon arising out of inadequate production capacity but evidently because of artificial scarcity created by the manufacturers in their self-interest.

The main reason for the continuing spurt in cement price is its decontrol. As it is, there is stiff competition in the cement paint and tile manufacturing business. Any further price revision at this stage is bound to have a severe adverse impact on the market conditions. The Government should take adequate steps to ensure that suitable control are brought in. Else it should allow import of cement.

- **101.** Why is the price of cement going up? (1) Because the Government is controlling the quota (2) Because of export of white cement (3) Because of the large usage of white cement (4) None of above 102. What is the crisis being faced by the cement tile manufacturers as described in the passage? (1) White cement prices are very high. (2) White cement is not of good quality (4) White cement is priced very low (3) White cement usage is high 103. Which of the following words has the same meaning as the word 'artificial' as used in the passage? (1) Deliberate (2) Prolonged (3) Practical (4) Unnatural 104. Which of the following words has the opposite meaning as the word 'basic' as used in the passage? (1) Vital (2) Unimportant (3) Acidic (4) Last 105. Which of the following has closest meaning to the word 'REPUTATION'? (1) Character (2) Respect (3) Fame (4) Honour **106.** Which of the following words means 'Theatrical'? (1) Thrilling 40cess (2) Histrionic (3) Delicate (4) Delicious **107.** Identify the word which is different from the rest of the words: (4) Doubtful (1) Indisputable (2) Uncertain (3) Dubious 108. Choose the word that accurately signifies a person who makes money by starting or running business: (1) Antreprenour (2) Andrapreneur (3) Entrapranour (4) Entrepreneur **109.** Which of the following is correct phrase to describe a group of insects?
- 110. Change the following sentence into passive sentence

They studied Mathematics last year

- (1) Mathematics was studied by them last year
- (2) Mathematics were studied by them last year
- (3) Mathematics has been studied by them last year

(2) A swarm of insects

(4) Mathematics studied them last year.

(1) A flock of insects

(4) A shoal of insects

(3) A school of insects

111.	The meaning of the wor (1) Entrance	d "EGRESS" is (2) Exit	(3) Double	(4) Program
112.	Choose the answer whice (1) Opportunity for free (3) To give enough space		ning of the idiom/phrase (2) Special room for the § (4) To add a new room to	guest
113.	Select the pair that best (1) Physician : Medicine (3) Spectrum : Colour	t expresses a relationship	similar to that expressed (2) Wave : Amplitude (4) Rainbow : Shower	in SCALE : TONE
114.	Choose the answer whocket". (1) Steal from someone's (3) To be very miserly	-	(2) To destroy other's bel (4) Money that is spent of	0 0
115.	Choose the correct alter My window looks(1) up on		(3) in	(4) at
116.	Fill in the blank with su	uitable article ud has a silver lining.		
117.	(1) AnFill in the blank with an This steak is completely(1) edible	(2) A ppropriate adjective. 7, it is cold and (2) erratic	(3) Thetough.(3) unswerving	(4) From (4) inedible
118.	Fill in the blank with a We have been looking fo (1) since	_	ges. (3) during	(4) in
119.	Fill in the blank with a Where is he? He should (1) be		go. (3) had been	(4) were
120.	Fill in the blank with a You shouldn't be here of (1) shouldn't you	n a holiday,	(3) wouldn't you?	(4) should you?
	-0030			

