MATHEMATICS

		1	0	0	
1.	If $A =$	0	1	1	and $6A^{-1} = A^2 + cA + dI$, where A^{-1} is A- inverse, I is the identify matrix, then (c, d)
		0	-2	4	

(1)	/	0	-1	1\
(1)	(_	-h	- 1	- 1 1
(_ _ /	١.	Ο,		

$$(2) (6, -11)$$

$$(3)(11, -6)$$

Let $\vec{a} = \vec{j} - \vec{k}$ and $\vec{c} = \vec{i} - \vec{j} - \vec{k}$. Then the vector \vec{b} satisfying $(\vec{a} \times \vec{b}) + \vec{c} = 0$ and $\vec{a} \cdot \vec{b} = 3$ is 2.

$$(1) - \vec{i} + \vec{i} - 2\vec{k}$$

(2)
$$2\vec{i} - \vec{j} + 2\vec{k}$$

(3)
$$\vec{i} - \vec{j} - 2\vec{k}$$

(4)
$$\vec{i} + \vec{j} - 2\vec{k}$$

Find the number of elements in the union of 4 sets A, B, C and D having 150, 180, 210 and 240 3. elements respectively, given that each pair of sets has 15 elements in common. Each triple of sets has 3 elements in common and $A \cap B \cap C \cap D = \emptyset$

$$(2)$$
 512

If the straight line ax + by + c = 0 always passes through (1, -2), then a, b, c are in 4.

(1) A.P.

5. A six faced die is a biased one. It is thrice more likely to show an odd number than to show an even number. It is thrown twice. The probability that the sum of the numbers in the two throws is even is

(1)
$$\frac{4}{8}$$

(2)
$$\frac{5}{8}$$

(3)
$$\frac{6}{8}$$

$$(4) \frac{7}{8}$$

If $I_n = \int_0^{\pi/4} \tan^n \theta d\theta$, then $I_8 + I_6$ equals

(1) $\frac{1}{4}$ (2) $\frac{1}{5}$

(1)
$$\frac{1}{4}$$

(2)
$$\frac{1}{5}$$

(3)
$$\frac{1}{6}$$

$$(4) \frac{1}{7}$$

Let \triangle ABC be a triangle whose area is $10\sqrt{3}$ units with side lengths |AB| = 8 units and |AC| = 5 units. 7. Find possible values of the angle A.

(1) 60° or 120°

Person A can hit a target 4 times in 5 attempts. Person B - 3 times in four attempts. Person C - 2 8. times in 3 attempts. They fire a volley. The probability that the target is hit at least two times. Is

 $(1) \frac{3}{4}$

(3) $\frac{5}{6}$

(4) 1

The value of the integral $\int_{0}^{\pi/2} \frac{\sqrt{\sin x} \ dx}{\sqrt{\sin x} + \sqrt{\cos x}}$ is 9.

(1) 0

(2) $-\frac{\pi}{4}$

10. If ω is a cube root of unity, then find the value of determinant $\begin{vmatrix} 1+\omega & \omega^2 & -\omega \\ 1+\omega^2 & \omega & -\omega^2 \\ \omega^2+\omega & \omega & -\omega^2 \end{vmatrix}$

(1) 3ω

 $(2) -3\omega$

(3) $3 \omega^2$

		nree conterminous edges	of a parallelepiped, then the
(1) 8	(2) 10	(3) 4	(4) 14
		rm equals the sum of th	e next two terms. Then the
(1) $\frac{(1-\sqrt{5})}{2}$	$(2) \ \frac{(\sqrt{5})}{2}$	(3) $\sqrt{5}$	(4) $\frac{(\sqrt{5}-1)}{2}$
If $f(x) = \tan^{-1} \left[\frac{\sin x}{1 + \cos x} \right]$	then what is the first de	rivative of $f(x)$?	
(1) $\frac{1}{2}$	$(2) -\frac{1}{2}$	(3) 2	(4) -2
The solution of $\sin x + 1$	$= \cos x \text{ such that } 0 \le x \le 1$	$2\pi\mathrm{is}$	
(1) $0,\pi$	(2) $0, \frac{\pi}{2}$	(3) $\frac{\pi}{2}, \frac{3\pi}{2}$	$(4) \ 0, \frac{3\pi}{2}$
		be formed by using the v	ertices of a regular polygon
(1) 5	(2) 7	(3) 6	(4) 4
If \overline{X}_1 and \overline{X}_2 are the modistribution, then			
$(1) \ \overline{X} < \overline{X}_1$	$(2) X > \overline{X}_2$	$(3) \overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$	$(4) \overline{X}_1 < \overline{X} < \overline{X}_2$
• •			(4) 2
	function of second degree	e and $f(1) = f(-1)$. If a, b, c	e are in A.P. then $f'(a)$,
(1) G.P.	(2) H.P.	(3) A.G.P.	(4) A.P.
Find the point at which	, the tangent to the curve	$y = \sqrt{4x - 3} - 1 \text{ has its sl}$	ope $\frac{2}{3}$
		(3)(2,3)	(4)(2,2)
are likely to contradict	each other in stating the	same fact?	hat percentage of cases they (4) 33/50
A man observes the anglinds the angle of elevations of the mountain?	gle of elevation of the top tion to be 45°. What is the	of mountain to be 30°. He distance of the first poin	walks 1000 feet nearer and t of observation from the
(1) $500\sqrt{3}(\sqrt{3}+1)ft$	(2) $500(\sqrt{3}+1)t$	(3) $500(\sqrt{3}-1)ft$	(4) $500\sqrt{3}(\sqrt{3}-1)ft$
		3. The value of the first te	rm is n and the value of the
(1) 1	(2) $\frac{2}{3}$	(3) $\frac{3}{2}$	$(4) \frac{12}{11}$
Force $3\vec{i} + 2\bar{j} + 5k$ and $2\vec{j} + 5k$	$2\vec{i} + \vec{j} - 3\vec{k}$ are acting on a	particle and displace it fr	com the point $2\vec{i} - \vec{j} - 3\vec{k}$ to
the point $4\vec{i} - 3\vec{j} + 7\vec{k}$, to (1) 18 units	hen the work done by the (2) 30 units	force is. (3) 24 units	(4) 36 units
	volume of parallelepipe (1) 8 In a G.P. consisting of common ratio of the G.D. (1) $\frac{(1-\sqrt{5})}{2}$ If $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (1) $\frac{1}{2}$ The solution of $\sin x + 1$ (1) $0,\pi$ Let T_n denote the number of n sides. If $T_{n+1} - T_n = 0$ (1) \overline{X} If \overline{X}_1 and \overline{X}_2 are the medistribution, then (1) $\overline{X} < \overline{X}_1$ The area enclosed with $T_n = 0$ (1) $T_n = 0$ (2) $T_n = 0$ (3) $T_n = 0$ (4) $T_n = 0$ (5) $T_n = 0$ (7) $T_n = 0$ (8) $T_n = 0$ (9) $T_n = 0$ (1) $T_n = 0$ (1) $T_n = 0$ (1) $T_n = 0$ (2) $T_n = 0$ (3) $T_n = 0$ (4) $T_n = 0$ (5) $T_n = 0$ (6) $T_n = 0$ (7) $T_n = 0$ (8) $T_n = 0$ (9) $T_n = 0$ (1) $T_n = 0$ (1	volume of parallelepiped is $(1) \ 8 \qquad (2) \ 10$ In a G.P. consisting of positive terms, each tercommon ratio of the G.P. is $(1) \frac{(1-\sqrt{5})}{2} \qquad (2) \frac{(\sqrt{5})}{2}$ If $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$, then what is the first definition of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$, then what is the first definition of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$, then what is the first definition of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$, then what is the first definition of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$, then what is the first definition of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$, then what is the first definition of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$. The side of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ and $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ and $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$. The area enclosed within the curve $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$. The area enclosed within the curve $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$. The condition of second degree $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$. The contradict each other in stating the $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$. The sum of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ and George speaks the are likely to contradict each other in stating the $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$. The sum of $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (2) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (3) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (2) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (3) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (3) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (4) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (5) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (7) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (8) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (9) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (10) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (11) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (12) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (13) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (14) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (15) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (17) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (18) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$ (19) $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$	(1) 8 (2) 10 (3) 4 In a G.P. consisting of positive terms, each term equals the sum of the common ratio of the G.P. is $(1) \frac{(1-\sqrt{5})}{2} \qquad (2) \frac{(\sqrt{5})}{2} \qquad (3) \sqrt{5}$ If $f(x) = \tan^{-1}\left[\frac{\sin x}{1+\cos x}\right]$, then what is the first derivative of $f(x)$? $(1) \frac{1}{2} \qquad (2) \frac{-1}{2} \qquad (3) 2$ The solution of $\sin x + 1 = \cos x$ such that $0 \le x \le 2\pi$ is $(1) 0, \pi \qquad (2) 0, \frac{\pi}{2} \qquad (3) \frac{\pi}{2}, \frac{3\pi}{2}$ Let T_n denote the number of triangles which can be formed by using the work n sides. If $T_{n+1} - T_n = 21$ then n equals. $(1) 5 \qquad (2) 7 \qquad (3) 6$ If \overline{X}_1 and \overline{X}_2 are the means of two distributions such that $\overline{X}_1 < \overline{X}_2$ and \overline{X}_2 distribution, then $(1) \ \overline{X} < \overline{X}_1 \qquad (2) \ X > \overline{X}_2 \qquad (3) \ \overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ The area enclosed within the curve $ X + Y = 1$ (in square units) is $(1) \sqrt{2} \qquad (2) 1 \qquad (3) \sqrt{3}$ Let $f(x)$ be a polynomial function of second degree and $f(1) = f(-1)$. If a, b, c $f'(b), f'(c)$ are in. $(1) \ G.P. \qquad (2) \ H.P. \qquad (3) \ A.G.P.$ Find the point at which, the tangent to the curve $y = \sqrt{4x - 3} - 1$ has its sl $(1) \ (3, 3) \qquad (2) \ (3, 2) \qquad (3) \ (2, 3)$ Atal Speaks truth in 70% and George speaks the truth in 60% cases. In what is likely to contradict each other in stating the same fact? $(1) \ 13/50 \qquad (2) \ 11/50 \qquad (3) \ 23/50$ A man observes the angle of elevation of the top of mountain to be 30°, He finds the angle of elevation to be 45°. What is the distance of the first point foot of the mountain? $(1) \ 500\sqrt{3}(\sqrt{3}+1)ft \qquad (2) \ 500(\sqrt{3}+1)ft \qquad (3) \ 500(\sqrt{3}-1)ft$ The sum of n terms of an arithmetic series is 216. The value of the first to n therm is $2n$. The common difference, d is. $(1) \ 1 \qquad (2) \ \frac{2}{3} \qquad (3) \ \frac{3}{2}$ Force $3\vec{i} + 2\vec{j} + 5k$ and $2\vec{i} + \vec{j} - 3\vec{k}$ are acting on a particle and displace it for the point $4\vec{i} - 3\vec{j} + 7\vec{k}$, then the work done by the force is.

25. The minimum value of the function $y = 2x^3 + 36x - 20$ is. (1) -120 (2) -126 (3) -128 (4) None of these (1) -120 (2) -126 (3) -128 (4) None of these (1) -120 (2) -126 (3) -128 (4) None of these (26. In how many different ways can the letters of the word "CORPORATION" be arranged so that all the vowels is always come together? (1) 810 (2) 1440 (3) 2880 (4) 50400 (4) 50400 (27. If $\log_x y = 100$ and $\log_2 x = 10$, then the value of y is. (1) 2^{10} (2) 2^{100} (2) 2^{100} (3) 2^{1000} (4) 2^{10000} (27. If $\log_x y = 100$ and $\log_2 x = 10$, then the value of y is. (1) $2x - 3y - 4 = 0$ (2) $2x - 3y + 4 = 0$ (3) $2x - 3y - 8 = 0$ (4) $2x - 3y + 8 = 0$ (29. In a $AABC$, $(c + a + b)(a + b - c) = ab$. The measure of the angle C is. (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{3}$ (4) None of these (10) $\frac{\pi}{3}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{3}$ (4) $\frac{\pi}{3}$ (5) $\frac{\pi}{3}$ (7) $\frac{\pi}{3}$ (7) $\frac{\pi}{3}$ (8) $\frac{\pi}{3}$ (8) $\frac{\pi}{3}$ (9) $\frac{\pi}{3}$ (9) $\frac{\pi}{3}$ (10) $\frac{\pi}{3}$ (10) $\frac{\pi}{3}$ (11) $\frac{\pi}{3}$ (12) $\frac{\pi}{3}$ (13) $\frac{\pi}{3}$ (14) $\frac{\pi}{3}$ (15) $\frac{\pi}{3}$ (15) $\frac{\pi}{3}$ (16) $\frac{\pi}{3}$ (17) $\frac{\pi}{3}$ (17) $\frac{\pi}{3}$ (18) $\frac{\pi}{3}$ (19) $\frac{\pi}{3}$ (1 1 1			
25. The minimum value of the function $y = 2x^3 + 36x - 20$ is. (1) -120 (2) -126 (3) -128 (4) None of these (1) -120 (2) -126 (3) -128 (4) None of these (1) -120 (2) -126 (3) -128 (4) None of these (2) In how many different ways can the letters of the word "CORPORATION" be arranged so that all the vowels is always come together? (1) 810 (2) 1440 (3) 2880 (4) 50400 (4) 2^{1000} (2) $16 \log_2 x = 10$, then the value of y is. (1) 2^{10} (2) 2^{100} (2) 2^{100} (3) 2^{100} (4) 2^{1000} (2) 2^{100} (2) 2^{100} (3) 2^{100} (4) 2^{1000} (2) 2^{100} (2) 2^{100} (3) 2^{100} (4) 2^{1000} (4) 2^{1000} (2) 2^{10} (2) 2^{10} (3) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (2) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (5) 2^{10} (7) 2^{10} (1) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (5) 2^{10} (4) 2^{10} (7) 2^{10} (7) 2^{10} (8) 2^{10} (9) 2^{10} (9) 2^{10} (1) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) None of these (1) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (5) 2^{10} (7) 2^{10} (7) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (5) 2^{10} (7) 2^{10} (7) 2^{10} (8) 2^{10} (9) 2^{10} (1) 2^{10} (1) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (7) 2^{10} (7) 2^{10} (8) 2^{10} (9) 2^{10} (1) 2^{10} (1) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (7) 2^{10} (7) 2^{10} (8) 2^{10} (9) 2^{10} (9) 2^{10} (1) 2^{10} (1) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (5) 2^{10} (7) 2^{10} (7) 2^{10} (1) 2^{10} (2) 2^{10} (3) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (7) 2^{10} (7) 2^{10} (8) 2^{10} (7) 2^{10} (8) 2^{10} (8) 2^{10} (9) 2^{10} (9) 2^{10} (1) 2^{10} (1) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (7) 2^{10} (9) 2^{10} (1) 2^{10} (1) 2^{10} (2) 2^{10} (2) 2^{10} (3) 2^{10} (4) 2^{10} (4) 2^{10} (5) 2^{1	24.	The value of $9^{\frac{1}{3}} 9^{\frac{1}{9}} 9^{\frac{1}{27}}$	∞ is.		
26. In how many different ways can the letters of the word "CORPORATION" be arranged so that all the vowels is always come together? (1) 810 (2) 1440 (3) 2880 (4) 50400 (2) 1410 (2) 121000 (2) 12100 (3) 121000 (4) 1211000 (2) 121000 (2) 12100 (3) 121000 (4) 1211000 (2) 121000 (2) 121000 (3) 121000 (4) 1211000 (2) 121000 (2) 121000 (3) 121000 (4) 1211000 (2) 121000 (2) 121000 (3) 121000 (4) 1211000 (2) 121000 (2) 121000 (3) 121000 (4) 1211000 (2) 121000 (2) 121000 (3) 121000 (4) 1211000 (2) 121000 (2) 121000 (3) 121000 (4) 1211000 (2) 121000 (2) 121000 (3) 121000 (4) 1211000 (4) 1211000 (2) 121000 (2) 121000 (3) 121000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211000 (4) 1211		(1) 3	(2) 6	(3) 9	(4) None of these
26. In how many different ways can the letters of the word "CORPORATION" be arranged so that all the vowels is always come together? (1) 810 (2) 1440 (3) 2880 (4) 50400 27. If $\log_x y = 100$ and $\log_2 x = 10$, then the value of y is. (1) 2^{10} (2) 2^{100} (3) 2^{1000} (4) 2^{10000} 28. The equations of the line parallel to the line $2x - 3y = 7$ and passing through the middle point of the line segment joining the points (1, 3) and (1, -7) is. (1) $2x - 3y - 4 = 0$ (2) $2x - 3y + 4 = 0$ (3) $2x - 3y - 8 = 0$ (4) $2x - 3y + 8 = 0$ 29. In a ΔABC , $(c + a + b)(a + b - c) = ab$. The measure of the angle C is. (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these 30. The number if non –negative integers less than 1000 that contain the digit 1 are. (1) 9^2 (2) 9^3 (3) $10^2 - 9^2$ (4) $10^3 - 9^3$ 31. The lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangent to the same circle. The radius of the this circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\vec{a} = 3\vec{i} + \vec{j} - 2\vec{k}$ and $b = \vec{i} - 3\vec{j} + 4\vec{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(B) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -7 (2) -2 (3) -3 (4) -4 36. If the quantion of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1)	25.	The minimum value of	the function $y = 2x^3 + 36x$	x-20 is.	
vowels is always come together? (1) 810 (2) 1440 (3) 2880 (4) 50400 (2) 1610 (2) 1440 (3) 2880 (4) 50400 (2) 1610 (2) 2100 (3) 21000 (4) 210000 (4) 210000 (2) 2100 (3) 21000 (4) 210000 (4) 210000 (2) 2100 (3) 21000 (4) 210000 (4) 210000 (2) 2100 (3) 21000 (4) 210000 (4) 210000 (2) 2100 (2) 2100 (3) 21000 (4) 210000 (4) 210000 (2) 28. The equations of the line parallel to the line $2x - 3y = 7$ and passing through the middle point of the line segment joining the points (1, 3) and (1, -7) is. (1) $2x - 3y - 4 = 0$ (2) $2x - 3y + 4 = 0$ (3) $2x - 3y - 8 = 0$ (4) $2x - 3y + 8 = 0$ (29) In a $ABBC$, $(c + a + b)(a + b - c) = ab$. The measure of the angle C is. (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these 30. The number if non –negative integers less than 1000 that contain the digit 1 are. (1) 92 (2) 93 (3) 102 – 92 (4) 103 – 93 (4) 103		(1) - 120	(2) -126	(3) -128	(4) None of these
(1) 810 (2) 1440 (3) 2880 (4) 50400 27. If $\log_x y = 100$ and $\log_2 x = 10$, then the value of y is. (1) 2^{10} (2) 2^{100} (2) 2^{100} (3) 2^{1000} (4) 2^{10000} 28. The equations of the line parallel to the line $2x - 3y = 7$ and passing through the middle point of the line segment joining the points $(1, 3)$ and $(1, -7)$ is. (1) $2x - 3y - 4 = 0$ (2) $2x - 3y + 4 = 0$ (3) $2x - 3y - 8 = 0$ (4) $2x - 3y + 8 = 0$ 29. In a $\triangle ABC$, $(c + a + b)(a + b - c) = ab$. The measure of the angle C is. (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these 30. The number if non –negative integers less than 1000 that contain the digit 1 are. (1) 9^2 (2) 9^3 (3) $10^2 - 9^2$ (4) $10^3 - 9^3$ 31. The lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangent to the same circle. The radius of the this circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\bar{a} = 3\bar{i} + \bar{j} - 2\bar{k}$ and $b = \bar{i} - 3\bar{j} + 4\bar{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(B) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\bar{i} - \bar{j} + \bar{k}, \bar{i} + 2\bar{j} - 3\bar{k}$ and $3\bar{i} + \lambda \bar{j} + 5\bar{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27	26 .			e word "CORPORATION"	be arranged so that all the
28. The equations of the line parallel to the line $2x - 3y = 7$ and passing through the middle point of the line segment joining the points $(1, 3)$ and $(1, -7)$ is. $(1) 2x - 3y - 4 = 0$ $(2) 2x - 3y + 4 = 0$ $(3) 2x - 3y - 8 = 0$ $(4) 2x - 3y + 8 = 0$ 29. In a ABC , $(c + a + b)(a + b - c) = ab$. The measure of the angle C is. $(1) \frac{\pi}{3}$ $(2) \frac{\pi}{6}$ $(3) \frac{2\pi}{3}$ (4) None of these 30. The number if non –negative integers less than 1000 that contain the digit 1 are. $(1) 9^2$ $(2) 9^3$ $(3) 10^2 - 9^2$ $(4) 10^3 - 9^3$ 31. The lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangent to the same circle. The radius of the this circle is. $(1) \frac{3}{2}$ $(3) \frac{3}{4}$ $(4) \frac{3}{4}$ $(4) \frac{7}{10}$ 32. The area of the parallelogram whose diagonals are $\bar{a} = 3\bar{i} + \bar{j} - 2\bar{k}$ and $b = \bar{i} - 3\bar{j} + 4\bar{k}$ is. $(1) 10\sqrt{3}$ $(2) 5\sqrt{3}$ $(3) 10\sqrt{2}$ $(4) 5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? $(1) \sqrt{a^2 - b^2 - 1}$ $(2) \sqrt{a^2 + b^2 - 1}$ $(3) \sqrt{a^2 + b^2 + 1}$ $(4) \sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(B) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\bar{i} - \bar{j} + \bar{k}$, $\bar{i} + 2\bar{j} - 3\bar{k}$ and $3\bar{i} + \lambda \bar{j} + 5\bar{k}$ are coplanar, then λ is. $(1) - 1$ $(2) - 2$ $(3) - 3$ $(4) - 4$ 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. $(1) \sqrt{\frac{3}{2}}$ $(2) \sqrt{2}$ $(3) \sqrt{\frac{2}{3}}$ $(4) \sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. $(1) 39$ $(2) 105$ $(3) 15$ $(4) 27$		_	_	(3) 2880	(4) 50400
28. The equations of the line parallel to the line $2x - 3y = 7$ and passing through the middle point of the line segment joining the points $(1, 3)$ and $(1, -7)$ is. (1) $2x - 3y - 4 = 0$ (2) $2x - 3y + 4 = 0$ (3) $2x - 3y - 8 = 0$ (4) $2x - 3y + 8 = 0$ 29. In a $\triangle ABC$, $(c + a + b)(a + b - c) = ab$. The measure of the angle C is. (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these 30. The number if non –negative integers less than 1000 that contain the digit 1 are. (1) 9^2 (2) 9^3 (4) $10^3 - 9^3$ 31. The lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangent to the same circle. The radius of the this circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\ddot{a} = 3\vec{i} + \vec{j} - 2\vec{k}$ and $b = \vec{i} - 3\vec{j} + 4\vec{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27	27 .		2x = 10, then the value of		
line segment joining the points $(1, 3)$ and $(1, -7)$ is. (1) $2x - 3y - 4 = 0$ (2) $2x - 3y + 4 = 0$ (3) $2x - 3y - 8 = 0$ (4) $2x - 3y + 8 = 0$ 29. In a $\triangle ABC$, $(c + a + b)(a + b - c) = ab$. The measure of the angle C is. (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these 30. The number if non –negative integers less than 1000 that contain the digit 1 are. (1) 9^2 (2) 9^3 (3) $10^2 - 9^2$ (4) $10^3 - 9^3$ 31. The lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangent to the same circle. The radius of the this circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\tilde{a} = 3\tilde{i} + \tilde{j} - 2\tilde{k}$ and $b = \tilde{i} - 3\tilde{j} + 4\tilde{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(B) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\tilde{i} - \tilde{j} + \tilde{k}$, $\tilde{i} + 2\tilde{j} - 3\tilde{k}$ and $3\tilde{i} + \lambda \tilde{j} + 5\tilde{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27		(1) 2^{10}	$(2) 2^{100}$	$(3) 2^{1000}$	$(4) \ 2^{10000}$
29. In a $\triangle ABC$, $(c+a+b)(a+b-c)=ab$. The measure of the angle C is. (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these 30. The number if non –negative integers less than 1000 that contain the digit 1 are. (1) 9^2 (3) 10^2-9^2 (4) 10^3-9^3 31. The lines $3x-4y+4=0$ and $6x-8y-7=0$ are tangent to the same circle. The radius of the this circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\ddot{a}=3\ddot{i}+\ddot{j}-2\ddot{k}$ and $b=\ddot{i}-3\ddot{j}+4\ddot{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x+a\cos x=b$, then what is the expression for $ a\sin x-\cos x $ in terms of a and b ? (1) $\sqrt{a^2-b^2-1}$ (2) $\sqrt{a^2+b^2-1}$ (3) $\sqrt{a^2+b^2+1}$ (4) $\sqrt{a^2-b^2+1}$ 34. If A and B are two events such that $P(A\cup B)=\frac{5}{6}$ and $P(\overline{B})=\frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\ddot{i}-\ddot{j}+\ddot{k}$, $\ddot{i}+2\ddot{j}-3\ddot{k}$ and $3\ddot{i}+\lambda\ddot{j}+5\ddot{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x+y=2$ and the vertex is $(2,-1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27	28.	line segment joining the	e points $(1, 3)$ and $(1, -7)$	is.	
(1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) None of these 30. The number if non -negative integers less than 1000 that contain the digit 1 are. (1) 9^2 (2) 9^3 (3) $10^2 - 9^2$ (4) $10^3 - 9^3$ 31. The lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangent to the same circle. The radius of the this circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\bar{a} = 3\vec{i} + \vec{j} - 2\vec{k}$ and $b = \vec{i} - 3\vec{j} + 4\vec{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.	90				$(4) 2\lambda = 5y + 6 = 0$
30. The number if non -negative integers less than 1000 that contain the digit 1 are. (1) 9^2 (2) 9^3 (3) $10^2 - 9^2$ (4) $10^3 - 9^3$ 31. The lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangent to the same circle. The radius of the this circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\bar{a} = 3\bar{i} + \bar{j} - 2\bar{k}$ and $b = \bar{i} - 3\bar{j} + 4\bar{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(B) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\bar{i} - \bar{j} + \bar{k}$, $\bar{i} + 2\bar{j} - 3\bar{k}$ and $3\bar{i} + \lambda\bar{j} + 5\bar{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is (2, -1). The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.	49.	,	· ,	- /	(4) Non a 26 th a 22
(1) 9^2 (2) 9^3 (3) $10^2 - 9^2$ (4) $10^3 - 9^3$ 31. The lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangent to the same circle. The radius of the this circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\vec{a} = 3\vec{i} + \vec{j} - 2\vec{k}$ and $b = \vec{i} - 3\vec{j} + 4\vec{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.		(1) $\frac{1}{3}$	$\frac{(2)}{6}$	(3) 21/3	(4) None of these
circle is. (1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\tilde{a} = 3\tilde{i} + \tilde{j} - 2\tilde{k}$ and $b = \tilde{i} - 3\tilde{j} + 4\tilde{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\tilde{i} - \tilde{j} + \tilde{k}$, $\tilde{i} + 2\tilde{j} - 3\tilde{k}$ and $3\tilde{i} + \lambda\tilde{j} + 5\tilde{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is (2, -1). The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2 y}{dx^2}$ is.	30.				
(1) $3/2$ (3) $3/4$ (3) $4/5$ (4) $7/10$ 32. The area of the parallelogram whose diagonals are $\bar{a} = 3\vec{i} + \vec{j} - 2\vec{k}$ and $b = \vec{i} - 3\vec{j} + 4\vec{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is (2, -1). The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.	31.		0 and 6x - 8y - 7 = 0 are t	ange <mark>nt to the same circle</mark>	. The radius of the this
32. The area of the parallelogram whose diagonals are $\tilde{a} = 3\vec{i} + \vec{j} - 2\vec{k}$ and $b = \vec{i} - 3\vec{j} + 4\vec{k}$ is. (1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is (2, -1). The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.			(3) 3/4	(3) 1/5	(4) 7/10
(1) $10\sqrt{3}$ (2) $5\sqrt{3}$ (3) $10\sqrt{2}$ (4) $5\sqrt{2}$ 33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\overline{i} - \overline{j} + \overline{k}$, $\overline{i} + 2\overline{j} - 3\overline{k}$ and $3\overline{i} + \lambda \overline{j} + 5\overline{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.					
33. If $\sin x + a \cos x = b$, then what is the expression for $ a \sin x - \cos x $ in terms of a and b ? (1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ 34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\overline{i} - \overline{j} + \overline{k}$, $\overline{i} + 2\overline{j} - 3\overline{k}$ and $3\overline{i} + \lambda \overline{j} + 5\overline{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits $\underline{3}$,5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.	32.				_
(1) $\sqrt{a^2 - b^2 - 1}$ (2) $\sqrt{a^2 + b^2 - 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ (3) $\sqrt{a^2 + b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ (5) $\sqrt{a^2 - b^2 + 1}$ (6) $\sqrt{a^2 - b^2 + 1}$ (7) $\sqrt{a^2 - b^2 + 1}$ (8) If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these (4) None of these (5) $\sqrt{a^2 - b^2 + 1}$ (6) $\sqrt{a^2 - b^2 + 1}$ (7) $\sqrt{a^2 - b^2 + 1}$ (8) $\sqrt{a^2 - b^2 + 1}$ (9) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (1) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (2) $\sqrt{a^2 - b^2 + 1}$ (3) Mutually exclusive (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (2) $\sqrt{a^2 - b^2 + 1}$ (3) Mutually exclusive (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (3) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (2) $\sqrt{a^2 - b^2 + 1}$ (3) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (2) $\sqrt{a^2 - b^2 + 1}$ (3) Mutually exclusive (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) $\sqrt{a^2 - b^2 + 1}$ (5) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (5) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) None of these (1) $\sqrt{a^2 - b^2 + 1}$ (4) None of these (1) None of				/ Ca	
34. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the events A and B are (1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is (2, -1). The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.	33.				
(1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.		(1) $\sqrt{a^2 - b^2 - 1}$	(2) $\sqrt{a^2 + b^2 - 1}$	(3) $\sqrt{a^2 + b^2 + 1}$	(4) $\sqrt{a^2-b^2+1}$
(1) Dependent (2) Independent (3) Mutually exclusive (4) None of these 35. If there vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} + 5\vec{k}$ are coplanar, then λ is. (1) -1 (2) -2 (3) -3 (4) -4 36. The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.	34.	If A and B are two even	ts such that $P(A \cup B) = \frac{5}{2}$	$\frac{1}{6}$ and $P(\overline{B}) = \frac{1}{2}$, then the	e events A and B are
(1) -1 (2) -2 (3) -3 (4) -4 The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2 y}{dx^2}$ is.					
(1) -1 (2) -2 (3) -3 (4) -4 The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2 y}{dx^2}$ is.	35.	If there vectors $2\vec{i} - \vec{j} +$	\vec{k} , $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \lambda \vec{j} +$	$-5\vec{k}$ are coplanar, then λ	is.
the side of the triangle is. (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits $\underline{3}$,5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.					
(1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{2}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\sqrt{\frac{20}{3}}$ 37. The total number of numbers that can be formed using the digits 3.5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.	36.		<u> </u>	le is $x + y = 2$ and the vert	(2, -1). The length of
37. The total number of numbers that can be formed using the digits $\underline{3}$,5 and 7 only if no repetitions are allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.				<u> </u>	20
allowed, is. (1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2 y}{dx^2}$ is.		(1) $\sqrt{\frac{3}{2}}$	$(2) \sqrt{2}$	(3) $\sqrt{\frac{2}{3}}$	(4) $\sqrt{\frac{20}{3}}$
(1) 39 (2) 105 (3) 15 (4) 27 38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2y}{dx^2}$ is.	37 .	The total number of nu	umbers that can be forme	d using the digits 3.5 and	d 7 only if no repetitions are
38. If $x = a \cos t$, $y = b \sin t$, then $\frac{d^2 y}{dx^2}$ is.			(9) 105	(9) 15	(4) 27
				(5) 10	(4) 21
(1) $-\frac{b^4}{a^2y^3}$ (2) $-\frac{b^4}{a^2x^3}$ (3) $\frac{b}{ay^4}$	38.		<i>απ</i>		
$a^{-}y^{\circ}$ $a^{-}x^{\circ}$ ay° bx°		$(1) - \frac{b^4}{2 \cdot 3}$	$(2) - \frac{b^4}{2 + 3}$	(3) $\frac{b}{4}$	(3) $\frac{a^4}{13}$
		a^2y^3	$a^{-}x^{\circ}$	ay	bx°

-88-

KINGS-Education **39.** A random variable X has the distribution law as given below:

X	1	2	3
P(X = x)	0.3	0.4	0.3

The variance of the distribution is

(1) 0.4

 $(2)\ 0.6$

(3) 2

(4) None of these

The value of $\tan \theta + 2 \tan 2\theta + 4 \tan 4\theta + 8 \cot 8\theta$ is. 40.

- (1) $\cot \theta$
- (2) $\tan \theta$
- (3) $\sin \theta$
- (4) $\cos \theta$

The sum of integers between 200 and 400, that are multiples of 7 is., 41.

- (2)8700
- (3)8972
- (4)8279

 $\lim_{x \to 0} \left[\frac{\tan x - x}{x^2 \tan x} \right]$ is equal to.

(1) 0

(2) 1

(3) $\frac{1}{2}$

Two fair dice are tossed. What is the probability that the total score is a prime number?

- (2) 5/12
- (3) 1/2

Find the equation of the circle which passes through (-1, 1) and (2, 1), and having centre on the 44. line x + 2y + 3 = 0.

(1) $2x^2 + 2y^2 - 2x + 7y - 13 = 0$

- (2) $x^2 + y^2 2x + 7y 13 = 0$
- (3) $2x^2 + 2y^2 + 2x + 7y 13 = 0$

(4) $x^2 + y^2 + 2x + 7y - 13 = 0$

45. Let \vec{a} , \vec{b} , \vec{c} be the position vectors of three vertices A, B, C of a triangle respectively then the area of this triangle is given by.

- (1) $\frac{1}{2} \left(\vec{a} \times \vec{b} \right) \vec{c}$
- (2) $\frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$ (3) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ (4) None of these

The sum of the focal distances of any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with eccentricity e is given by.

(2) 2b

(3) 2a

 $(4)\ 2be$

If $\sin x + \sin^2 x = 1$, then $\cos^2 + \cos^4 x$ is equal to.

(3) -1

(4) 2

An experiment succeeds twice often as it fails. The probability that in the next six trials there will be at least four successes is.

- (1) 240/729
- (2) 496/729
- (3) 220/729
- (4) 233/729

Sum of 20 terms of the series $-1^2 + 2^2 - 3^2 + 4^2 - ...$ is.

 $(2)\ 200$

(4) 220

50. If $\tan \alpha = \frac{m}{m+1}$ and $\tan \beta = \frac{1}{2m+1}$ then $\alpha + \beta$ is equal to

- (2) $\pi/4$
- (3) $\frac{\pi}{6}$

 $(4) \pi$

ANALYTICAL ABILITY AND LOGICAL REASONING

51. A train takes 18 seconds to pass completely through a station 162 m long and 15 seconds through

	another station 120 r (1) 70	n long, at the same speed. (2) 80	What is the length of the (3) 90	train, in meters? (4) 100
52.		is 5th to the left of Shan		il, who is 17th from the right e left end. Totally how many (4) None of these
53.	Given that i) Some apples are b ii) Some doughnuts a iii) No coconut is a do iv) All blackberries ar	re apples. ughnut.		
	Which of the following (1) Some blackberries (3) All coconuts are n	are doughnuts	(2) Some coconuts are a (4) All doughnuts are n	· · · · · · · · · · · · · · · · · ·
Que	estions 54 to 56 are b	ased on the following:		
•	In a family of 6 person	ns, there are two couples.		/4
•	The lawyer is the hea	d of the family and has tw	o sons-Mukesh and Rake	sh-both teachers.
•	Mrs. Reena and her n	nother-in-law bo <mark>th are law</mark>	yers.	
•	Mukesh's wife is a do	ctor and th <mark>ey have a son</mark> , A	Ajay.	
54.	Which of the following (1) Lawyer-Teacher	g is definitely a couple? (2) Doctor-Lawyer	(3) Teacher-Teacher	(4) None of these
55.	What is the profession (1) Teacher	n of <mark>Rak</mark> esh's wife? (2) Doctor	(3) Lawyer	(4) Can not be determined
56 .	What is/was Ajay's gr (1) Teacher	andfather's occupation? (2) Lawyer	(3) Doctor	(4) Can not be determined
57.	Find the missing elen A, CD, GHI,, I (1) LMNO		(3) NOPQ	(4) OPQR
58.	language?	9		g is coded as HWDVI in that
	(1) HAPPY	(2) GUARD	(3) BEADS	(4) SPEED
59.		ers Alan, Bob, Carl and Da lan, who is 34, is two year (2) Bob	<u> </u>	der than Bob. Bob is one year o is the oldest? (4) Dave
Que	estions 60 to 62 are b	ased on the following:		
		_	_	aff members. The offices are meach other by six foot high

dividers. Hence voices, sounds and cigarette smoke flow easily from one office to another.

Miss Robert needs to use the telephone quite often throughout the day. Mr. Mike and Mr. Brown need adjacent offices as they need to consult each other often while working. Miss. Hardy, is a senior employee and has to be allotted the office number 5, having the biggest window. Mr. Donald requires silence in the offices next to his and Mr. Tim prefers to be as away as possible from Miss Robert. Mr. Mike and Mr.

Donald are all smokers. Miss Hardy finds tobacco smoke allergic and consecutively the offices next to hers to be occupied by non-smokers. Unless specifically stated all the employees maintain an atmosphere of silence during office hours.

snei	ice during office flours.			
60.	The ideal candidate to (1) Miss Hardy	occupy the office farthest (2) Mr. Mike	from Mr. Brown would be (3) Mr. Tim	e (4) Mr. Donald
61.	The three employees w (1) 1, 2 and 4	tho are smokers should be (2) 2, 3 and 6	seated in the offices. (3) 1, 2 and 6	(4) 1, 2 and 3
62.	The ideal office for Mr. (1) 2	Mike would be (2) 6	(3) 1	(4) 3
63.	minutes. I have alread	-	nour 20 minutes ago and	ence after every 3 hours 30 next time I shall go at 1:40 doctor? (4) None of these
64.	Which pair of numbers 42 40 38 35 (1) 25 22	s comes next in the following 33 31 28 (2) 26 23	ng series? (3) 26 24	(4) 25 23
Que i) ii) iii) iv) v) vi)	estions 65 and 66 are k All G's are H's All G's are J's or K's All J's and K's are G's All L's are K's All N's are M's No M's are G's	pased on the following:		
65.	If no P's are K's, which (1) All P's are J's (3) No P is an H	of the following must be t	crue? (2) If any P is a G, it is a (4) If any P is an H, it is	
66.	Which of the following (1) All H's are G's (3) Some H's are both I	is inconsistent with one of M's and G's	r more of the conditions? (2) All H's that are not (4) No M's are H's	G's are M's
67.		Pradeep and Pradeep is a ag. If Pradeep is taller that (2) Praveen	_	nand is shorter than Suresh, est of all? (4) Shyam
68.	older than his.sister.		years older than Rajeev	nd his mother was 25 years and his mother is 3 years (4) 10 years
69.	turns to his left and wa		turns to his left and walk	km towards West and then s 4 km and then stops. What (4) None of these
70.	A treasure chest has le	ess than 100 gold coins. Th	e number of coins is	
i)	One more than a multi	ple of 3		
ii)	Two more than a multi	iple of 4		
iii)	Three more than a mu	ltiple of 5 and		

iv)

Four more than a multiple of 6

	How many coins are (1) 58	(2) 88	hest?	(3) 98		(4) 38	
71.	Read the statements	and then dec	ide which of tl	he conclusion	s logically fo	llow.	
	Statements:						
	i) All mangoes are go ii) No golden coloure						
	Conclusions:					•	
	i) All mangoes are ch ii) Golden coloured n	_	ot cheap.				
	(1) Only conclusion i(3) Either i) or ii) fol	•			nclusion ii) fo i) nor ii) follo		
Que	estions 72 and 73 are	e based on th	ne following:				
•	A blacksmith has fiv	e iron articles	A, B, C, D an	d E, each hav	ving a differe	ent weight.	
•	A weighs twice as m	uch as B					
•	B weighs four and ha	alf times as m	uch as C				
•	C weighs half as mu	ch as D				/*	
•	D weighs half as mu	ch as E					
•	E weighs less than A	A but more tha	ın C		/ "		
72.	Which of the following (1) A	ng article is he (2) B	eaviest in weig	ght? (3) C	0	(4) D	
73.	Which of the following (1) A, B, E, D, C	ng re <mark>pres</mark> ents (2) B, D, I		g order of we (3) A, B, C,	A	articles? (4) C, D, E, B, A	
Que	estions 74 to 76 are	based on the	following:				
	re are three switches wing rules:	A, B and C v	vhich can be i	in ON/OFF p	osition. Thei	r settings change as per the	Э
i)	If A is the only switch	h as ON, char	nge B to ON.				
ii)	If A and B are only s	witches as ON	I, change C to	ON.			
iii)	If all three switches	are ON, chang	ge C to OFF.				
iv)	For all other situation to ON	ons, all switch	es in ON are	changed to C	OFF and all s	switches in OFF are change	ł
74.	If switches A and B at (1) AON, B OFF, C (3) A ON, B OFF, C	OFF	is OFF, their	(2) A ON, E	ings will be: 3 ON, C ON B ON, C OF	F	
75.	If only B is ON, the of (1) AON, BON, C OR (3) A ON, B OFF, C	N	ng will be:		3 ON, C OFF B OFF, C ON		
76 .	If only B is ON in th (1) AON, BON, C OL (3) A OFF, B ON, C	N	ting, which of	(2) A ON, E	could have b OFF, C ON B OFF, C ON		

77.	If the third day of a momenth?	onth falls on Friday, what	day will be on the fourth	day after twenty first of the
	(1) Monday	(2) Tuesday	(3) Saturday	(4) Thursday
78.	_			a boy and has twice as many many children does Emma
	(1) 2	(2) 3	(3) 5	(4) 7
Qu	estions 79 to 81 are ba	sed on the following:		
•	Anu is taller than Cini			
•	Eenu is shorter than Bir	nu		
•	Anu is shorter than Dan	y		
•	Eenu is taller than Anu			
79.	The best answer to "W" (1) Dany	ho is the tallest?" is (2) Binu	(3) Dany or Binu	(4) Both Dany and Binu
80.	Who is the shortest? (1) Cini (3) Eenu		(2) Anu or Cini (4) Insufficient data to c	onclude
81.	Which of the following (1) Binu is 7 feet tall (3) Eenu is the tallest:		logically order the person (2) Dany and Binu do no (4) Dany is the tallest in	
82.	Arjun, Karan starts 10		ing line in a second 100 r	0 metres. To do a favour to netre race. They both run at second race?
•	Karan and Arjun reach	the <mark>fini</mark> shing line <mark>simu</mark> ltar	neously	
•	Arjun beats Karan by 1	metre		
•	Arjun beats Karan by 11	l metres		
•	Karan beats Arjun by 1	metre		
83.	defeated West Indies t twice. Which country h		Zealand twice and West l	ated India twice. Australia Indies defeated New Zealand (4) West Indies
84.		Nirmal said "She is the da Nirmal?	aughter of my wife's gran	dfather's only child". How is
	(1) Wife	(2) Sister-in-law	(3) Sister	(4) None of these
Qu	estions 85 to 87 are ba	sed on the following:		
At	most one person is stand		ep number, on which A i	4, 5 and 6 from the bottom. s standing, is two less than
85.	If A is standing on Step	p 1, which of the following	is true?	
	(1) B is standing on ste (3) E is standing on ste	-	(2) C is standing on step (4) D is standing one ste	

86.	If D is standing on step (1) 2 or 4 only	1, on which step A could (2) 3 or 5 only	be standing? (3) 3 or 4 only	(4) 4 or 5 only
87.	If there are two steps is which of the following s	_	which A and D are stand	ding, A must be standing on
	(1) 3	(2) 4	(3) 5	(4) 6
88.		means A is younger than	ns A and B are of the sa B. What does Sachin * Mo (3) Sachin is oldest	ame age, A – B means B is ohan – Ravi mean? (4) Mohan is oldest
89.	he returned from tenn minutes to go to tennis	is court, he noticed that	t the hour hand is 20° at the same speed while g	nd is 20° away from 4. After away from 4. If he took ten oing to the tennis court and (4) 50 minutes
90.		unlimited capacity. Usin	_	one is slightly heavier. The imum number of weighings
	(1) 1	(2) 2	(3) 3	(4) 4
		GENERAL	ENGLISH	/4,
91.		, choose the appropriate died, then you will be red (2) anyone	_	ence meaningful. If you had (4) someone
92.			the pair - Diamond: Neck (3) Gold: Bangle	
93.	Choose the suitable pro	position for the blank to	make a meaningful senter	nce.
	Suresh is angry h (1) about	nis servant. . (2) on	(3) by	(4) with
94.		rnative for the sentence b	elow:	
	The earth is always rev (1) The earth revolves r (3) The earth revolving	ound the sun	(2) The earth is revolvin(4) None of these	g round the sun
95.	Choose the word that be (1) A clean shave	est expresses the meaning (2) A narrow escape	g of the given idiom: "A cl (3) A guarded secret	ose shave" (4) A sudden fall
96.	Pick the part of the sen (1) My elder brother		My elder brother is a MA (3) whereas I am	whereas I am only a BA (4) only a BA
97.		casal verb for the blank in en untimely rain threaten (2) gave out		(4) gave off
98.			. , ,	ing to the word AFFLUENT
•••	(1) Reluctant	(2) Poor	(3) Clear	(4) Enthusiastic
99.	Fill in the blank with a Don't blame yourself, it 1) misunderstanding	ppropriate form of noun: 's not your (2) error	(3) Slip	(4) fault
100.	Fill in the blank:			
	The instructor, along w (1) are	ith the class, an (2) have	gry about the room chang (3) has	ge (4) is

COMPUTERS

101.	Choose the suitable wor What you say is(1) Before		t a meaningful statement (3) behind	(4) beyond
102.	Fill in the blank with a	suitable preposition:		
	If you want to avoid trait (1) until	fic, you need to leave(2) by	7.30 A.M. (3) during	(4) at
103.	Choose the word that be "ta smell a rat" (1) To suspect somethin (3) To detect bad smell	est expresses the meaning	g of the given idiom: (2) To misunderstand (4) To forsake	
104.	Out of the given alterna (1) Judge	tives, choose the word that (2) Release	at best expresses the mea G) Shorten	ning of the word ABRIDGE (4) Dissolve
105.	'A dog's breakfast mean (1) Breakfast cooked for (3) Something that has	a dog	(2). Breakfast cooked by (4). None of these	a dog
106.	Change the speech: She (1)'She says she likes go (3) She says that she like	_	seaside". (2) She says I like going (4) She says she like goir	
107.	Arrange the following to P: will normally be gran Q: candidates should no (1) SRQP		S: change of centre (3) QSPR	(4). QRSP
108.	(1) She was one of the at(2) She is one of the ave	rage student of the class. verage students of the clase rage student of the class the average student of the		
109.	The decoration of the ne	ds to form a grammatical w house, including-the fu (2) are more pleasing		(4) are pleasing
110.	Fill in the blank: The President of the Un (1) were	ited States, accompanied (2) are	by his advisors,(3) was	enroute to Europe. (4) both (1) and (3)
111.	All digital circuits can b (1) Exclusive OR gates		(3) Multiplexers	(4) OR gate
112 .	The Boolean function a	$+(\bar{a}.b)$ is equivalent to		
	(1) <i>a.b</i>	(2) $a + b$	(3) $a.\bar{b}$	$(4) \ \overline{a} + b$
113.	Which of the following c (1) Flip-Flop	ircuit is used as a memor (2) Rectifier	y device in computers? (3) Comparator	(4) All of these
114.	Convert the Hexadecima (1) 2333	al number 4DF to its octa (2) 2337	l equivalent (3) 2773	(4) 2373

115. A tautology is a Boolean formula that is always true. Which of the following is a tautology?

(1) x

- (2) $(x + \overline{x})y$
- (3) x + y + x
- (4) (xy) + x

116. Acronym of EEPROM is

- (1) Extended Erasable Programmable Memory
- (2) Electrically Erasable Read Only Memory
- (3) Electrically Erasable Programmable Read Only Memory
- (4) Extended Erasable Page-Oriented Memory

117. For reproducing sound, a CD audio player uses a

- (1) Quartz crystal
- (2) Titanium needle
- (3) Barium ceramic
- (4) Laser beam

118. When we open an internet site, we see www. What does www stand for?

- (1) World Wide Word (2) World Wide Web
- (3) World Wide Webinar
- (4) Word Widing Works

119. The answer of the operation $(10111)_2 \times (1110)_2$ in hex equivalent is

- (1) 150
- (2) 14C
- (3) 142
- (4) 13E

120. The minimum number of bits to represent a character from ASCII code set is

(1) 2

(2) 8

 $(3)\ 5$

ANSWER KEY

1.	(1)	16.	(4)	31.	(2)	46.	(3)	61.	(4)	76.	(2)	91.	(4)	106.	(1)
2.	(1)	17.	(4)	32.	(1)	47.	(2)	62.	(4)	77.	(3)	92.	(2)	107.	(4)
3.	(4)	18.	(4)	33.	(4)	48.	(2)	63.	(1)	7 8.	(4)	93.	(4)	108.	(1)
4.	(1)	19.	(2)	34.	(2)	49.	(3)	64.	(3)	79.	(3)	94.	(1)	109.	(3)
5.	(2)	20.	(3)	35.	(4)	50.	(2)	65.	(2)	80.	(1)	95.	(2)	110.	(3)
6.	(4)	21.	(1)	36.	(3)	51.	(3)	66.	(3)	81.	(4)	96.	(2)	111.	(1)
7.	(1)	22.	(4)	37.	(3)	52.	(2)	67.	(4)	82.	(4)	97.	(3)	112.	(2)
8.	(3)	23.	(3)	38.	(1)	53.	(1)	68.	(4)	83.	(3)	98.	(2)	113.	(1)
9.	(4)	24.	(1)	39.	(2)	54.	(1)	69.	(3)	84.	(1)	99.	(4)	114.	(2)
10.	(4)	25.	(4)	40.	(1)	55.	(3)	70.	(1)	85.	(4)	100.	(4)	115.	(3)
11.	(3)	26.	(4)	41.	(1)	56.	(4)	71.	(2)	86.	(3)	101.	(4)	116.	(3)
12.	(4)	27.	(3)	42.	(4)	57.	(2)	72.	(1)	87.	(2)	102.	(2)	117.	(4)
13.	(1)	28.	(3)	43.	(2)	58.	(2)	7 3.	(1)	88.	(2)	103.	(1)	118.	(2)
14.	(4)	29.	(3)	44.	(1)	59.	(4)	74.	(2)	89.	(1)	104.	(3)	119.	(3)
15.	(2)	30.	(4)	45.	(2)	60.	(3)	75 .	(3)	90.	(2)	105.	(2)	120.	(4)

