Indices - Surds and Logarithms
1. Indices
1.2. Some special approximations
Approximate value of \({\left( {1 + \frac{1}{n}} \right)^n}\)
If we actually calculate the values \({\left( {1 + \frac{1}{{100}}} \right)^{100}}\) or \({\left( {1 + \frac{1}{{1000}}} \right)^{1000}}\) with the help of calculator or log table, we will come to the conclusion that these values will be very close to 2.7. Actually the value of \({\left( {1 + \frac{1}{n}} \right)^n}\) is very close to \(e\), where \(e = 2.7182\) and \(n\) is a large number.
For example \({\left( {1 + \frac{1}{{1000}}} \right)^{1000}}\)= \({\left( {1 + \frac{1}{{500}}} \right)^{500}} = 2.71\).
\({\left( {1 + \frac{1}{n}} \right)^n} = e\)
and \({\left( {1 - \frac{1}{n}} \right)^n} = {e^{ - 1}} = \frac{1}{e}\)
where \(n\) is a large number.
Using this result, we can solve some questions very quickly, for example suppose we want to calculate the approximate value of the number \({(0.99)^{100}}\), write the number as \({(1 - 0.01)^{100}} = {\left( {1 - \frac{1}{{100}}} \right)^{100}} = \frac{1}{e} = 0.36\), (putting the approximate value of \(e = 2.71\)).
Thus \({0.99^{100}} \approx 0.36\)
Example 01: If \(A = {400^{101}}\) and \(B = {404^{100}}\), find the approximate value of \(\frac{A}{B}\)
\(\frac{A}{B} = \frac{{{{\left( {400} \right)}^{101}}}}{{{{\left( {404} \right)}^{100}}}} = \frac{{{{400}^{100}} \times {{400}^1}}}{{{{400}^{100}}{{\left( {1 + \frac{4}{{400}}} \right)}^{100}}}}\)
\( \Rightarrow \frac{{{{400}^{100}} \times {{400}^1}}}{{{{400}^{100}}{{\left( {1 + \frac{1}{{100}}} \right)}^{100}}}} = \frac{{{{400}^{100}} \times {{400}^1}}}{{{{400}^{100}} \times (2.71)}}\)
\( \Rightarrow \frac{A}{B} = \frac{{400}}{{2.7}} \approx 150\).
Maximum value of the number \({n^{1/n}}\)
If \(n\) is a positive number, then the value of \({n^{1/n}}\) is maximum when \(n = e \approx 2.7\), after that it decreases. If we consider only natural values for \(n\), then the maximum value of \({n^{1/n}}\) is obtained at \(n = 3\) as \(3\) is the closest number to \(e\). So among the numbers \({2^{1/2}},\,{3^{1/3}},\,{4^{1/4}},\,{5^{1/5}},\,\,{6^{1/6}},\,{7^{1/7}}\), the number \({3^{1/3}}\) is the largest. After reaching to the maximum value, the number \({n^{1/n}}\) starts decreasing. At bigger values of \(n\), we get a smaller value of \({n^{1/n}}\). So \({7^{1/7}} < {6^{1/6}} < {5^{1/5}}\).
Example 02: Arrange them in descending order \(a = {2^{1/2}},\,\,b = {3^{1/3}},\,\,c = \,{6^{1/6}},\,\,d = {9^{1/9}}\)
\({a^6} = {\left( {{2^{1/2}}} \right)^6} = 8\), \({c^6} = {\left( {{6^{1/6}}} \right)^6} = 6\), thus \(a > c\). The correct order is \(b > a > c > d\)