Quadratic Equations

6. Equations Reducible to Quadratic Form

6.3. Form 3

Equation of the form \(a{x^{\bf{4}}} + b{x^{\bf{3}}} + c{x^{\bf{2}}} + bx + a = {\rm{ }}{\bf{0}}\). In such cases divide the equation by \(x^2\) and then assume \(x + \frac{1}{x}=t\). See the example.

Example 01: Solve the equations

\(a{x^4} + {\rm{ }}b{x^3} + {\rm{ }}c{x^3} + {\rm{ }}bx{\rm{ }} + {\rm{ }}a{\rm{ }} = 0\) 

Solution:  this equations is also convertible to quadratic form, dividing by \({x^2}\), we get,

\(a{x^2} + bx + c + \frac{b}{x} + \frac{a}{{{x^2}}} = 0\)

\(a\left( {{x^2} + \frac{1}{{{x^2}}}} \right) + b\left( {x + \frac{1}{x}} \right) + c = 0\)

Suppose \(\left( {x + \frac{1}{x}} \right)\) = t, then \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right)\) \( = {t^2}-{\rm{ }}2\)

Then the equation becomes, 

\(a\left( {{t^2}-{\rm{ }}2} \right){\rm{ }} + b\left( t \right){\rm{ }} + c = {\rm{ }}0\), this equation can be solved as discussed in the previous example.