Topic Wise Previous Year Questions
1. Trigonometry
1.1. Ratios and Identities
Easy
Moderate
Difficult
Question 01: The maximum value of \((\cos {\alpha _1})(\cos {\alpha _2}).....(\cos {\alpha _n})\) where
\(0 \le {\alpha _1},\,{\alpha _2},\,{\alpha _3},\,...{\alpha _n} \le \pi \) and \((\cot {\alpha _1})(\cot {\alpha _2}).....(\cot {\alpha _n}) = 1\) is:
(1) \(\frac{1}{{{2^{n/2}}}}\)
(2) \(\frac{1}{{{2^n}}}\)
(3) \(\frac{1}{{2n}}\)
(4) 1
This questions can be solved quickly by taking \(n = 2\), then
\(\cot {\alpha _1}\cot {\alpha _2} = 1 \Rightarrow \cot {\alpha _1} = \tan {\alpha _2}\)
\( \Rightarrow \tan \left( {\frac{\pi }{2} - {\alpha _1}} \right) = \tan {\alpha _2}\)
or \({\alpha _1} + {\alpha _2} = \frac{\pi }{2}\)
Now \((\cos {\alpha _1})(\cos {\alpha _2}) = \cos {\alpha _1}\cos \left( {\frac{\pi }{2} - {\alpha _1}} \right) = \cos {\alpha _1}\sin {\alpha _1}\)
\( = \frac{{\sin 2{\alpha _1}}}{2}\),
and this value is maximum when \(2{\alpha _1} = 90\) or \({\alpha _1} = 45\)
Hence the maximum value occurs at \({\alpha _1} = {\alpha _2} = 45\)
Substituting the values \({\alpha _1} = {\alpha _2} = {\alpha _3} = ......{\alpha _n} =
\frac{\pi }{4}\), then maximum value of \((\cos {\alpha _1})(\cos {\alpha _2}).....(\cos {\alpha _n})\) is \({\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = \frac{1}{{{2^{n/2}}}}\)
Alternate Solution: Given that \(\frac{{\cos {\alpha _1}\cos
{\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}}}{{\sin {\alpha _1}\sin {\alpha _2}\sin {\alpha _3}......\sin {\alpha _n}}} = 1\)
\( \Rightarrow \cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}\)
= \(\sin {\alpha
_1}\sin {\alpha _2}\sin {\alpha _3}......\sin {\alpha _n}\)
\(\Rightarrow {\left( {\cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}} \right)^2}\)
= \(\left( {\cos {\alpha _1}\sin {\alpha _1}} \right)\left( {\cos
{\alpha _2}\sin {\alpha _2}} \right)......\left( {\cos {\alpha _n}\sin {\alpha _n}} \right)\)
Using \(\cos \theta \sin \theta = \frac{{\sin 2\theta }}{2}\), we have
\({\left( {\cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos
{\alpha _n}} \right)^2} = \frac{{\left( {\sin 2{\alpha _1}} \right)\left( {\sin 2{\alpha _2}} \right)......\left( {\sin 2{\alpha _n}} \right)}}{{{2^n}}}\)
As maximum values of \(\sin 2\alpha_1 = \sin 2{\alpha _2} = .... = 1\), hence
\({\left(
{\cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}} \right)^2} \le \frac{1}{{{2^n}}}\)
Question 02: If (1+ tan 1°) (1+ tan 2°) ……….. (1+ tan 45°) = \({2^n}\), then the value of \(n\) is:
(1)
21
(2) 22
(3) 23
(4) 24
We know that
\((1 + \tan \theta )[1 + \tan (45 - \theta )] = (1 + \tan \theta )\left( {1 + \frac{{\tan 45 - \tan \theta }}{{1 + \tan 45\tan \theta }}} \right)\)
\( = (1 + \tan \theta )\left( {\frac{{1 + \tan \theta + 1 - \tan \theta }}{{1
+ \tan \theta }}} \right) = 2\)
\( \Rightarrow (1 + \tan {1^ \circ })(1 + \tan {44^ \circ }) = (1 + \tan {2^ \circ })(1 + \tan {43^ \circ }).. = 2\)
Hence the value of \(n = 23\).
Question 03: The value of sin 12° sin 48° sin 54° is:
(1) sin 30°
(2) \({\sin ^2}{30^ \circ }\)
(3)
\({\sin ^3}{30^ \circ }\)
(4) \({\cos ^3}{30^ \circ }\)
We know that \(\sin \theta \cdot \sin (60 - \theta ) \cdot \sin (60 + \theta ) = \frac{{\sin 3\theta }}{4}\)
The expression in the question can be written as
\(\sin 12\sin 48\sin 54 = \frac{{\sin 12\sin 48\sin 72\sin 54}}{{\sin 72}}\)
\(
= \frac{{\sin 36\sin 54}}{{4\sin 72}} = \frac{{2\sin 36\sin 54}}{{8\sin 72}}\)
\(\frac{{\sin 72}}{{8\sin 72}} = \frac{1}{8} = {\sin ^3}30\)
Question 04: If \(\cos \alpha + \cos \beta = a,\;\sin \alpha + \sin \beta = b\) and \(\theta \) is the arithmetic
mean between \(\alpha \) and \(\beta \), then \(\sin 2\theta + \cos 2\theta \) is equal to:
(1) \(\) \(\frac{{{{(a + b)}^2}}}{{{{(a - b)}^2}}}\)
(2) \(\frac{{{{(a - b)}^2}}}{{{{(a + b)}^2}}}\)\(\)
(3) \(\frac{{{a^2} - {b^2}}}{{{a^2} + {b^2}}}\)
(4) None of these
Given that \(2\cos \left( {\cfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\cfrac{{\alpha - \beta }}{2}} \right) = a\)
\(2\sin \left( {\cfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\cfrac{{\alpha - \beta }}{2}} \right) = b\)
Dividing
second equation be first, we get
\(\cfrac{{\sin \left( {\cfrac{{\alpha + \beta }}{2}} \right)}}{{\cos \left( {\cfrac{{\alpha + \beta }}{2}} \right)}} = \cfrac{b}{a} \Rightarrow \tan \left( {\cfrac{{\alpha + \beta }}{2}} \right) = \cfrac{b}{a}\)
Using
the formula,
\(\sin 2\theta = \cfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }},\;\;\cos 2\theta = \cfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\)
\(\sin 2\theta + \cos 2\theta = \cfrac{{2\tan \theta + 1 - {{\tan }^2}\theta
}}{{1 + {{\tan }^2}\theta }}\)
\( = \cfrac{{\cfrac{{2b}}{a} + 1 - \cfrac{{{b^2}}}{{{a^2}}}}}{{1 + \cfrac{{{b^2}}}{{{a^2}}}}} = \cfrac{{{a^2} + 2ab - {b^2}}}{{{a^2} + {b^2}}}\)
Question 05: If \(A = {\cos ^2}\theta + {\sin ^4}\theta \), then for all values of \(\theta \).
(1) \(1
\le A \le 2\)
(2) \(\frac{{13}}{{16}} \le A \le 1\)
(3) \(\frac{3}{4} \le A \le \frac{{13}}{{16}}\)
(4) \(\frac{3}{4} \le A \le 1\)
\(A = 1 - {\sin ^2}\theta + {\sin ^4}\theta = 1 - {\sin ^2}\theta (1 - {\sin ^2}\theta )\)
\( \Rightarrow A = 1 - {\sin ^2}\theta {\cos ^2}\theta \)
\( \Rightarrow A = 1 - \frac{{{{\sin }^2}2\theta }}{4}\)
Since, \(0 \le {\sin ^2}2\theta
\le 1\), hence \(\frac{3}{4} \le A \le 1\)
Question 06: The value of \(\sqrt 3 \)cot 20° – 4 cos 20° is
(1) 1
(2) –1
(3) 0
(4) none of
these
Adding 1 and subtracting 1,
\(\cfrac{{\sqrt 3 \cos 20}}{{\sin 20}} - 1 + 1 - 4\cos 20\)
\( = \cfrac{{\sqrt 3 \cos 20 - \sin 20}}{{\sin 20}} + 1 - 4\cos 20\)
\( = \cfrac{{2\left( {\cfrac{{\sqrt 3 }}{2}\cos 20 - \cfrac{1}{2}\sin 20} \right)}}{{\sin
20}} + 1 - 4\cos 20\)
\( = \cfrac{{2(\sin 60\cos 20 - \cos 60\sin 20)}}{{\sin 20}} + 1 - 4\cos 20\)
\( = \cfrac{{2\sin 40}}{{\sin 20}} + 1 - 4\cos 20 = 4\cos 20 + 1 - 4\cos 20\) = 1
Question 07: If \(\tan \theta = \cfrac{b}{a},\)then the value of \(a\cos 2\theta + b\sin 2\theta \) is
(1) \(b\)
(2) \(a\)
(3) \(\cfrac{a}{b}\)
(4) \(\cfrac{a}{{a + b}}\)
Using the formula,
\(\sin 2\theta = \cfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }},\;\;\cos 2\theta = \cfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\)
\(a\cos 2\theta + b\sin 2\theta = a\left( {\cfrac{{1 - \cfrac{{{b^2}}}{{{a^2}}}}}{{1
+ \cfrac{{{b^2}}}{{{a^2}}}}}} \right) + b\left( {\cfrac{{2\cfrac{b}{a}}}{{1 + \cfrac{{{b^2}}}{{{a^2}}}}}} \right)\)
\( = a\left( {\cfrac{{{a^2} - {b^2} + 2{b^2}}}{{{a^2} + {b^2}}}} \right) = a\)
Question 08: The value of \(\cfrac{{1 - {{\tan }^2}15^\circ }}{{1 + {{\tan }^2}15^\circ }}\) is
(1) 1
(2) \(\sqrt 3 \)
(3) \(\cfrac{{\sqrt 3 }}{2}\)
(4) 2
We know that \(\cos 2\theta = \cfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\)
Hence \(\cfrac{{1 - {{\tan }^2}15^\circ }}{{1 + {{\tan }^2}15^\circ }} = \cos 30 = \cfrac{{\sqrt 3 }}{2}\)
Question 09: If \(\sin x,\,\cos x\) and \(\tan x\) are in GP, then the value of \(\cot {\,^6}x - {\cot ^2}x\)
is:
(1) 2
(2) –1
(3) 1
(4) 0
Given that \(\sin x,\;\cos x,\;\tan x\)are in GP, then
\({\cos ^2}x = \sin x \cdot \tan x \Rightarrow {\cos ^3}x = {\sin ^2}x\)
Or \({\cot ^3}x = \frac{1}{{\sin x}} = {\rm{cosec}}\,x\)
\( \Rightarrow {\cot ^6}x = {\rm{cosec}}{\,^2}x\)
Therefore
\({\cot ^6}x - {\cot ^2}x = {\rm{cose}}{{\rm{c}}^2}x - {\cot ^2}x = 1\)
Question 10: The value of \(\sin 30\cos 45 + \cos 30\sin 45\) is:
(1) \(\frac{{1 - \sqrt 3 }}{2}\)
(2) \(\frac{{1 + \sqrt 3 }}{{2\sqrt 2 }}\)
(3) \(\frac{2}{{\sqrt 3 }}\)
(4) \(\frac{{\sqrt 3 }}{2}\)
\(\sin 30\cos 45 + \cos 30\sin 45 = \frac{1}{2} \times \frac{1}{{\sqrt 2 }} + \frac{{\sqrt 3 }}{2} \times \frac{1}{{\sqrt 2 }}\)
\( = \frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\)
Question 11: If \(A - B = \cfrac{\pi }{4}\), then (1 + tan A)(1 – tan B) is equal to:
(1) 2
(2) 1
(3)
0
(4) 3
Given that \(A - B = \cfrac{\pi }{4}\)
\( \Rightarrow \tan (A - B) = \tan \cfrac{\pi }{4}\)
\( \Rightarrow \cfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} = 1\)
or tan A – tan B = 1 + tan A tan B
or tan A – tan B – tan A tan B = 1
Adding 1 on both sides
(1+ tan A) – tan B(1 + tan A) = 2
(1+ tan A)(1– tan B) = 2
Question 12: Which of the following is correct?
(1) sin 1° > sin 1
(2) sin 1° < sin 1
(3) sin
1° = sin 1
(4) \(\sin 1^\circ = \frac{\pi }{{180}}\sin 1\)
We know that 1 radian is approximately 57°. Clearly sin 1 > sin 1°.
Question 13: If \(\cos (\alpha + \beta ) = \cfrac{4}{5}\) and sin (a – b) = \(\sin (\alpha - \beta ) = \cfrac{5}{{13}},\)
\(0 < \alpha ,\,\;\beta < \cfrac{\pi }{4},\) then \(\tan 2\alpha \) is:
(1) \(\cfrac{{56}}{{33}}\)
(2) \(\cfrac{{63}}{{65}}\)
(3) \(\cfrac{{16}}{{63}}\)
(4) \(\cfrac{{33}}{{56}}\)
Given that \(\cos (\alpha + \beta ) = \cfrac{4}{5}\) and \(\sin (\alpha - \beta ) = \cfrac{5}{{13}}\)
Thus \(\tan (\alpha + \beta ) = \cfrac{3}{4}\) and \(\tan (\alpha - \beta ) = \cfrac{5}{{12}}\)
Now \(\tan 2\alpha = \tan \left( {\left(
{\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right)\)
\( = \cfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\,\tan \left( {\alpha - \beta
} \right)}}\)
\( = \cfrac{{\cfrac{3}{4} + \cfrac{5}{{12}}}}{{1 - \cfrac{3}{4} \times \cfrac{5}{{12}}}} = \cfrac{{\cfrac{{27 + 15}}{{36}}}}{{1 - \cfrac{5}{{16}}}} = \cfrac{{\cfrac{{42}}{{36}}}}{{\cfrac{{11}}{{16}}}} = \cfrac{{56}}{{33}}\)
Question 14: If \({\sin ^2}x = 1 - \sin x,\) then \({\cos ^4}x + {\cos ^2}x = \)
(1) 0
(2) 1
(3)
\(\frac{2}{3}\)
(4) –1
From the give equation,
\(1 - {\cos ^2}x = 1 - \sin x\)or \({\cos ^2}x = \sin x\)
Squaring it again we get the answer
\({\cos ^4}x = 1 - {\cos ^2}x\)\( \Rightarrow {\cos ^4}x + {\cos ^2}x = 1\).
(This question is again repeated
in NIMCET 2013)
Question 15: If \(\sin (\pi \cos \theta ) = \cos (\pi \sin \theta )\), then \(\sin 2\theta \) is:
(1) \(
\pm \frac{3}{4}\)
(2) \( \pm \frac{1}{4}\)
(3) \( \pm \frac{1}{4}\)
(4) \( \pm \frac{4}{3}\)
Given that \(\sin (\pi \cos \theta ) = \cos (\pi \sin \theta )\)
\( \Rightarrow \sin (\pi \cos \theta ) = \sin \left( {\frac{\pi }{2} \pm \pi \sin \theta } \right)\)
\( \Rightarrow \pi \cos \theta = \frac{\pi }{2} \pm \pi \sin \theta \)
\( \Rightarrow \cos \theta \mp \sin \theta = \frac{1}{2}\)
Squaring both the sides,
\({\cos ^2}\theta + {\sin ^2}\theta \pm 2\sin \theta \cos \theta = \frac{1}{4}\)
or \(\sin 2\theta = \pm \frac{3}{4}\)
Question 16: If \(\sin x + a\cos x = b\), then what is the expression for \(|a\sin x - \cos x|\) in terms of
\(a\) and \(b\)?
(1) \(\sqrt {{a^2} - {b^2} - 1} \)
(2) \(\sqrt {{a^2} + {b^2} - 1} \)
(3) \(\sqrt {{a^2} + {b^2} + 1} \)
(4) \(\sqrt {{a^2} - {b^2} + 1} \)
Given that \(\sin x + a\cos x = b\), let \(a\sin x - \cos x = y\), squaring and adding both the equations,
\({(\sin x + a\cos x)^2} + {(a\sin x - \cos x)^2} = {b^2} + {y^2}\)
\( \Rightarrow {y^2} = 1 + {a^2} - {b^2}\) or \(|y|\, = \sqrt
{{a^2} - {b^2} + 1} \)
(This question is again asked in NIMCET 2014)
Question 17: The value of \(\tan \theta + 2\tan 2\theta + 4\tan 4\theta + 8\cot 8\theta \) is.
(1)
\(\cot \theta \)
(2) \(\tan \theta \)
(3) \(\sin \theta \)
(4) \(\cos \theta \)
This type of questions can be solved by putting a simple and suitable values of \(\theta \) both in the question and the answer choices. Here we can \(\theta = 0\) and the value of the expression in the question becomes infinity, in the choices
except choice (1), all other choices are finite numbers, hence choice (1) is correct. Detailed solution is given below:
Subtracting and adding \(\cot \theta \), we have
\((\tan \theta - \cot \theta ) + 2\tan 2\theta + 4\tan 4\theta +
8\cot 8\theta + \cot \theta \)
Let us first simplify \(\tan \theta - \cot \theta \) as \(\frac{{\sin \theta }}{{\cos \theta }} - \frac{{\cos \theta }}{{\sin \theta }} = - \frac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos
\theta }}\)
\( = \frac{{ - \cos 2\theta }}{{\frac{{\sin 2\theta }}{2}}} = - 2\cot 2\theta \)
Hence \(\tan \theta - \cot \theta = - 2\cot 2\theta \), in the same manner,
\(2\tan 2\theta - 2\cot 2\theta = - 4\cot 4\theta \) and so on.
Proceeding
in the same manner, we get the value of the expression as \(\cot \theta \).
Question 18: If \(\tan \alpha = \frac{m}{{m + 1}}\) and \(\tan \beta = \frac{1}{{2m + 1}}\) then \(\alpha +
\beta \) is equal to
(1) \(\frac{\pi }{3}\)
(2) \(\frac{\pi }{4}\)
(3) \(\frac{\pi }{6}\)
(4) \(\pi \)
\(\tan (\alpha + \beta ) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}\)
\( = \frac{{\frac{m}{{m + 1}} + \frac{1}{{2m + 1}}}}{{1 - \left( {\frac{m}{{m + 1}}} \right)\left( {\frac{1}{{2m + 1}}} \right)}} = \frac{{2{m^2}
+ 2m + 1}}{{2{m^2} + 2m + 1}} = 1\)
\( \Rightarrow \alpha + \beta = \frac{\pi }{4}\)
Question 19: The value of sin 20° sin 40° sin 80° is:
(1) \(\frac{1}{2}\)
(2) \(\frac{{\sqrt 3 }}{2}\)
(3) \(\frac{{\sqrt 3 }}{8}\)
(4) \(\frac{1}{8}\)
We know that \(\sin \theta \sin (60 - \theta )\sin (60 + \theta ) = \cfrac{{\sin 3\theta }}{4}\)
\( \Rightarrow \sin 20\sin 40\sin 80 = \frac{{\sin (3 \times 20)}}{4} = \frac{{\sqrt 3 }}{8}\)
Question 20: If \(\tan A - \tan B = x,\;\cot B - \cot A = y\), then the value of \(\cot (A - B)\) is:
(1)
\(\frac{1}{x} + \frac{1}{y}\)
(2) \(x + y\)
(3) \(\frac{1}{x} - \frac{1}{y}\)
(4) \( - \frac{1}{x} + \frac{1}{y}\)
\(\cot B - \cot A = \cfrac{{\tan A - \tan B}}{{\tan A\tan B}} = y\)
Putting the value of \(\tan A - \tan B\), we get
\(\tan A\tan B = \frac{x}{y}\)
Now \(\tan (A - B) = \cfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} = \frac{x}{{1 + \frac{x}{y}}}
= \frac{{xy}}{{x + y}}\)
Hence \(\cot (A - B) = \frac{{x + y}}{{xy}} = \frac{1}{x} + \frac{1}{y}\)
Question 21: The value of tan 1° tan 2° tan 3°……… tan 88° tan 89° is:
(1) 0
(2) \(\frac{1}{{\sqrt 2
}}\)
(3) 1
(4) 2
We know that tan (90 – x) = cot x, hence
tan 89° = tan(90° – 1) = cot 1°
Hence tan 1°. tan 89° = 1, tan 2°. tan 88° = 1 etc.
Except tan 45°, all the terms can be paired, hence the answer is 1.
Question 22: If \(P = {\sin ^{20}}\theta + {\cos ^{48}}\theta ,\) then the inequality that holds for all values
of \(\theta \) is
(1) \(P \ge 1\)
(2) \(0 < P \le 1\)
(3) \(1 < P < 3\)
(4) \(0 \le P \le 1\)
We know that \({\sin ^2}\theta + {\cos ^2}\theta = 1\), if we use higher powers of \(\sin \theta \) and \(\cos \theta \), then the answer will be less than or equal to 1. Also \(\sin \theta \) and \(\cos \theta \) are not simultaneously zero, thus \(0 < {\sin ^{20}}\theta + {\cos ^{48}}\theta \le 1\)
Question 23: The value of \(\tan \left( {\frac{{7\pi }}{8}} \right)\) is
(1) \(1 - \sqrt 2 \)
(2) \(1
+ \sqrt 2 \)
(3) \(\sqrt 2 + \sqrt 3 \)
(4) \(\sqrt 2 - \sqrt 3 \)
Since \(\tan \left( {\frac{{7\pi }}{8}} \right) = - \tan \left( {\frac{\pi }{8}} \right)\)
Let is first calculate the value of \(\tan \left( {\frac{\pi }{8}} \right)\), using the formula \(\cos 2\theta = \cfrac{{1 - {{\tan }^2}\theta }}{{1
- {{\tan }^2}\theta }}\), we have
\(\cos \cfrac{\pi }{4} = \cfrac{{1 - {{\tan }^2}\left( {\frac{\pi }{8}} \right)}}{{1 + {{\tan }^2}\left( {\frac{\pi }{8}} \right)}}\)\( \Rightarrow {\tan ^2}\cfrac{\pi }{8} = \cfrac{{\sqrt 2 - 1}}{{\sqrt
2 + 1}} = {(\sqrt 2 - 1)^2}\)
Hence \(\tan \frac{\pi }{8} = \sqrt 2 - 1\) or \(\tan \left( {\frac{{7\pi }}{8}} \right) = - \tan \left( {\frac{\pi }{8}} \right) = 1 - \sqrt 2 \)
Question 24: If \(\cos \theta = \frac{5}{{13}},\frac{{3\pi }}{2} < \theta < 2\pi ,\) then \(\tan 2\theta
\) is
(1) \(\frac{{ - 120}}{{119}}\)
(2) \(\frac{{ - 120}}{{169}}\)
(3) \(\frac{{119}}{{169}}\)
(4) \(\frac{{120}}{{119}}\)
Given \(\cos \theta = \frac{5}{{13}},\frac{{3\pi }}{2} < \theta < 2\pi \)
we know than \(\tan 2\theta = \frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\) [\(3\pi < 2\theta < 4\pi \)]
so, \(\tan \theta = \frac{{ - 12}}{5}\)
\(\therefore \tan 2\theta = \frac{{2 \times \left( {\frac{{ - 2}}{5}} \right)}}{{1 \times {{\left( {\frac{{ - 12}}{5}} \right)}^2}}}\)= \(\frac{{120}}{{119}}\)
Question 25: The value of cos 20° + cos 100° + cos 140° is
(1) 0
(2) \(\frac{1}{{\sqrt 2 }}\)
(3) \(\frac{1}{2}\)
(4) 1
The expression cos 20° + cos 100° + cos 140° can be simplified as:
\( = 2\cos \left( {\frac{{20 + 100}}{2}} \right)\cos \left( {\frac{{100 - 20}}{2}} \right) + \cos 140\)
\( = 2\cos 60\cos 40 + \cos 140\)
\( = \cos 40 + \cos 140\)
\(
= \cos 40 + \cos (180 - 40) = 0\)
Question 26: If \(\tan x = \frac{{ - 3}}{4}\) and \(\frac{{3\pi }}{2} < x < 2\pi \), then the value of
\(\sin 2x\) is
(1) 7/25
(2) – 7/25
(3) 24/25
(4) – 24/25
Given that \(\tan x = \frac{{ - 3}}{4}\) and \(\frac{{3\pi }}{2} < x < 2\pi \)
means \(x\) lies in fourth quadrant
Then \(\sin x = - \frac{3}{5}\) and \(\cos x = \frac{4}{5}\)
Now \(\sin 2x = 2\sin x\cos x\)
\(\sin 2x = -
2 \times \frac{3}{5} \times \frac{4}{5} = - \frac{{24}}{{25}}\)
Question 27: If \(\cos \theta = \frac{4}{5}\) and \(\cos \varphi = \frac{{12}}{{13}}\), with \(\theta \) and
\(\varphi \) both in the fourth quadrant, the value of \(\cos (\theta + \phi )\) is:
(1) \( - \frac{{16}}{{65}}\)
(2) \( - \frac{{33}}{{65}}\)
(3) \(\frac{{33}}{{65}}\)
(4) \(\frac{{16}}{{65}}\)
Given that \(\cos \theta = \frac{4}{5},\;\cos \varphi \frac{{12}}{{13}}\)
Given that \(\theta \), and \(\phi \)both lies in fourth quadrant then
\(\sin \theta = \frac{{ - 3}}{5}\) and \(\sin \phi = \frac{{ - 5}}{{13}}\)
Now, \(\cos
(\theta + \phi ) = \cos \theta \cos \phi - \sin \theta \sin \phi \)
= \(\frac{4}{5} \times \frac{{12}}{{13}} - \left( {\frac{{ - 3}}{5}} \right)\left( {\frac{{ - 5}}{{13}}} \right)\)
= \(\frac{{48}}{{65}} - \frac{{15}}{{65}} = \frac{{33}}{{65}}\)
Question 28: The value of sin 36° is
(1) \(\frac{{\sqrt {10 + 2\sqrt 5 } }}{4}\)
(2) \(\frac{{\sqrt
{10 - 2\sqrt 5 } }}{4}\)
(3) \(\frac{{\left( {\sqrt 5 + 1} \right)}}{4}\)
(4) \(\frac{{\left( {\sqrt 5 - 1} \right)}}{4}\)
It is a standard result, the value is \(\frac{{\sqrt {10 - 2\sqrt 5 } }}{4}\). This question can one by eliminating the choice. As sin 36° lies between sin 30° and sin 45°, so the answer is more than \(\frac{1}{2}\) and less than \(\frac{1}{{\sqrt 2 }}\). Only choice (2) is in this range.
Question 29: Express (cos 5x – cos7x) as a product of sines or cosines or sines and cosines,
(1) 2 cos
4x cos x
(2) 2 sin 4x sin x
(3) 2 sin 6x sin x
(4) 2 cos 6 x cos x
\(\cos C - \cos D = 2\sin \left( {\frac{{C + D}}{2}} \right)\sin \left( {\frac{{D - C}}{2}} \right)\)
\(\cos 5x - \cos 7x = 2\sin \left( {\frac{{5x + 7x}}{2}} \right)\sin \left( {\frac{{7x - 5x}}{2}} \right)\)
= \( = 2\sin 6x\sin x\)
Question 30: The maximum value of \(4{\sin ^2}x + 3{\cos ^2}x + \sin \,x/2 + \cos x/2\) is:
(1) 4
(2)
\(3 + \sqrt 2 \)
(3) 9
(4) \(4 + \sqrt 2 \)
Given \(y = 4{\sin ^2}x + 3{\cos ^2}x + \sin \,x/2 + \cos x/2\)
\( \Rightarrow y = 3 + {\sin ^2}x + \sin \,\frac{x}{2} + \cos \frac{x}{2}\)
We know that \(\sin \frac{x}{2} + \cos \frac{x}{2}\) is maximum when \(\frac{x}{2} = \frac{\pi
}{4}\) or \(x = \frac{\pi }{2}\) and at \(x = \frac{\pi }{2}\), \(\sin x\) is also maximum.
So maximum value of expression is \(3 + 1 + \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }} = 4 + \sqrt 2 \)
Question 31: If \(\sin \theta = 3\sin (\theta + 2\alpha )\), then the value of \(\tan (\theta + \alpha
) + 2\tan \alpha \) is:
(1) 3
(2) 2
(3) – 1
(4) 0
Rewrite the equation as \(\sin (\theta + \alpha - \alpha ) = 3\sin (\theta + \alpha + \alpha )\)
\( \Rightarrow \sin (\theta + \alpha )\cos \alpha - \cos (\theta + \alpha )\sin \alpha \)
\(\;\;\;\; = 3\sin (\theta + \alpha )\cos \alpha +
3\cos (\theta + \alpha )\sin \alpha \)
Dividing by \(\cos (\theta + \alpha )\cos \alpha \), we have
\(\tan (\theta + \alpha ) - \tan \alpha = 3\tan (\theta + \alpha ) + 3\tan \alpha \)
\( \Rightarrow \tan (\theta + \alpha ) + 2\tan
\alpha = 0\)
Question 32: In an acute-angled triangle ABC, the minimum value of \(\sec A + \sec B + \sec C\) is:
(1)
2
(2) 3
(3) 6
(4) 8
We can apply Jensen’s inequality to get,
\(\sec \left( {\frac{{A + B + C}}{3}} \right) \le \,\,\left( {\frac{{\sec A + \sec B + \sec C}}{3}} \right)\)
\( \Rightarrow \sec A + \sec B + \sec C \ge 3\sec 60\)
Hence minimum value of \(\sec
A + \sec B + \sec C\) is 6.
This question can also be done just by putting A = B = C = 60°.
Question 33: If \(\frac{{\tan x}}{2} = \frac{{\tan y}}{3} = \frac{{\tan z}}{5}\) and \(x + y + z = \pi \),
then the value of \({\tan ^2}x + {\tan ^2}y + {\tan ^2}z\) is:
(1) \(\frac{{38}}{3}\)
(2) 38
(3) 114
(4) None of these
Suppose \(\frac{{\tan x}}{2} = \frac{{\tan y}}{3} = \frac{{\tan z}}{5} = k\), then \(\tan x = 2k,\;\tan y = 3k,\;\tan z = 5k\)
In a triangle, \(\tan x + \tan y + \tan z = \tan x\tan y\tan z\)
\( \Rightarrow 2k + 3k + 5k = (2k)(3k)(5k)\)
or \(k = \pm \frac{1}{{\sqrt 3 }}\)
Now \({\tan ^2}x + {\tan ^2}y + {\tan ^2}z = (4 + 9 + 25){k^2}\)
\( = \frac{{38}}{3}\)
Question 34: If A > 0, B > 0 and A + B = \(\frac{\pi }{6}\), then the minimum value of tan A + tan B
is
(1) \(\sqrt 3 - \sqrt 2 \)
(2) \(4 - 2\sqrt 3 \)
(3) \(\frac{2}{{\sqrt 3 }}\)
(4) \(2 - \sqrt 3 \)
Using Jensen's Inequality,
\(\tan
\left( {\frac{{A + B}}{2}} \right) \le \frac{{\tan A + \tan B}}{2}\)
\( \Rightarrow \frac{{\tan A + \tan B}}{2} \ge \tan 15\)
\( \Rightarrow \tan A + \tan B \ge 2\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)\)
\(\;\;\;\;\;\;\;\;\;\;
\ge 2\left( {\frac{{(\sqrt 3 - 1)(\sqrt 3 - 1)}}{{(\sqrt 3 + 1)(\sqrt 3 - 1)}}} \right) \ge 4 - 2\sqrt 3 \)
Question 35: If cos x = tan y, cot y = tan z and cot z = tan x, then sin x is:
(1) \(\frac{{\sqrt 5 + 1}}{2}\)
(2)
\(\frac{{\sqrt 5 - 1}}{2}\)
(3) \(\frac{{\sqrt 5 + 1}}{4}\)
(4) \(\frac{{\sqrt 5 - 1}}{4}\)
Eliminating \(y\) from the given relations,
\(\cos x = \tan y = \frac{1}{{\cot y}} = \frac{1}{{\tan z}} = \cot z = \tan x\)
\( \Rightarrow \cos x = \tan x\)
Or \(\sin x = {\cos ^2}x = 1 - {\sin ^2}x\)
\( \Rightarrow \sin x = \frac{{
- 1 + \sqrt 5 }}{2}\)
Question 36: The value of \(\tan \left( {45 + \frac{A}{2}} \right)\) is:
(1) \(\tan \theta - \sec \theta
\)
(2) \(\tan \theta + \sec \theta \)
(3) \(\cot \theta - \sec \theta \)
(4) \(\cot \theta + \sec \theta \)
\(\tan \left( {45 + \frac{\theta }{2}} \right) = \frac{{1 + \tan \frac{\theta }{2}}}{{1 - \tan \frac{\theta }{2}}}\)
\( = \frac{{\sin \frac{\theta }{2} + \cos \frac{\theta }{2}}}{{\cos \frac{\theta }{2} - \sin \frac{\theta }{2}}} = \frac{{{{\left(
{\sin \frac{\theta }{2} + \cos \frac{\theta }{2}} \right)}^2}}}{{{{\cos }^2}\frac{\theta }{2} - {{\sin }^2}\frac{\theta }{2}}}\)
\( = \frac{{1 + \sin \theta }}{{\cos \theta }} = \sec \theta + \tan \theta \)
Question 37: The value of sin 10°sin 50°sin 70° is:
(1) 1/4
(2) 1/2
(3) 3/4
(4) 1/8
The value of \(\sin 10\sin 50\sin 70\)
\( = \frac{{\sin (3 \times 10)}}{4} = \frac{1}{8}\)
(using \(\sin \theta \sin (60 - \theta )\sin (60 + \theta ) = \frac{{\sin 3\theta }}{4}\))
Question 38: The expression \(\frac{{\tan A}}{{1 - \cot A}} + \frac{{\cot A}}{{1 - \tan A}}\) can be written
as:
(1) sin A cos A + 1
(2) sec A cosec A + 1
(3) tan A + cot A
(4) sec A + cosec A
The expression can be written as,
\(\frac{{{{\tan }^2}A}}{{\tan A - 1}} + \frac{{\cot A}}{{1 - \tan A}}\)
\( = \frac{1}{{\tan A - 1}}\left( {{{\tan }^2}A - \cot A} \right) = \frac{{{{\tan }^3}A - 1}}{{\tan A(\tan A - 1)}}\)
\( = \frac{{1
+ {{\tan }^2}A + \tan A}}{{\tan A}} = 1 + \frac{{{{\sec }^2}A}}{{\tan A}}\)
\( = 1 + \sec A\,{\rm{cosec}}\,A\)
Question 39: If \(3\sin x + 4\cos x = 5\), then \(6\tan \frac{x}{2} - 9{\tan ^2}\frac{x}{2}\) is:
(1) 1
(2) 3 (3)4
(3) 4
(4) 6
Using the formula, \(\sin x = \frac{{2\tan (x/2)}}{{1 + {{\tan }^2}(x/2)}}\) and \(\cos x = \frac{{1 - {{\tan }^2}(x/2)}}{{1 + {{\tan }^2}(x/2)}}\)
Let us assume \(\tan \,(x/2) = t\), then
\(3\left( {\frac{{2t}}{{1 + {t^2}}}} \right) + 4\left(
{\frac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = 5\)
\( \Rightarrow 9{t^2} - 6t + 1 = 0\)
Or \(6\tan (x/2) - 9{\tan ^2}(x/2) = 1\)
Question 40: In \(\Delta ABC\) if \({\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + {\tan ^2}\frac{C}{2} = k,\)
then \(k\) is always:
(1) > 1
(2) ≥ 1
(3) = 2
(4) = 1
We can put values of the angles A, B and C to get an idea about the value of \(k\), put A = B = C = 60°,
\(k = {\tan ^2}30 + {\tan ^2}30 + {\tan ^2}30 = 1\)
Put another set of values A = B = 30° and C = 120°,
\(k = {\tan ^2}15 + {\tan
^2}15 + {\tan ^2}45 > 1\)
Hence \(k \ge 1\)
Question 41: The value of tan 9° – tan 27° – tan 63° + tan 81° is equal to:
(1) 5
(2) 3
(3) 4
(4) 6
tan 9° – tan 27° – tan 63° + tan 81°
= \(\cfrac{{\sin 9^\circ }}{{\cos 9^\circ }} - \cfrac{{\sin 27^\circ }}{{\cos 27^\circ }} - \left[ {\cfrac{{\sin {{63}^ \circ }}}{{\cos {{63}^ \circ }}} - \cfrac{{\sin 81^\circ }}{{\cos 81^\circ }}} \right]\)
= A – B
Where A = \(\left( {\cfrac{{\sin {9^ \circ }\cos {{27}^ \circ } - \cos {9^ \circ }\sin {{27}^ \circ }}}{{\cos {9^ \circ }\cos {{27}^ \circ }}}} \right) = \cfrac{{ - \sin {{18}^ \circ }}}{{\cos {9^ \circ }\cos {{27}^ \circ }}}\)\(
= \cfrac{{ - 2\sin {9^ \circ }}}{{\cos {{27}^ \circ }}}\)
B = \(\cfrac{{\sin {{63}^ \circ }\cos {{81}^ \circ } - \sin {{81}^ \circ }\cos {{63}^ \circ }}}{{\cos {{63}^ \circ }\cos {{81}^ \circ }}}\)\( = \cfrac{{ - \sin {{18}^ \circ }}}{{\sin
{{27}^ \circ }\sin {9^ \circ }}} = \cfrac{{ - 2\cos {9^ \circ }}}{{\sin {{27}^ \circ }}}\)
Hence A – B = \(\cfrac{{2\cos {9^ \circ }}}{{\sin {{27}^ \circ }}} - \cfrac{{2\sin {9^ \circ }}}{{\cos {{27}^ \circ }}}\)\( = \cfrac{{2\left( {\cos
{9^ \circ }\cos {{27}^ \circ } - \sin {9^ \circ }\sin {{27}^ \circ }} \right)}}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}\)
\( = \cfrac{{2\cos {{36}^ \circ }}}{{\left( {\cfrac{{\sin {{54}^ \circ }}}{2}} \right)}} = \cfrac{{4\cos {{36}^
\circ }}}{{\sin {{54}^ \circ }}}\) = 4.
Question 42: If \({\rm{cosec}}\,\theta - \cot \theta = 2\), then the value of \({\rm{cosec}}\,\theta \) is:
(1)
\(\frac{5}{3}\)
(2) \(\frac{3}{5}\)
(3) \(\frac{4}{5}\)
(4) \(\frac{5}{4}\)
We know that \({\rm{cose}}{{\rm{c}}^2}\,\theta - {\cot ^2}\theta = 1\)
Hence \(({\rm{cosec}}\,\theta + \cot \theta )({\rm{cosec}}\,\theta - \cot \theta ) = 1\)
Given that \({\rm{cosec}}\,\theta - \cot \theta = 2\)
\( \Rightarrow {\rm{cosec}}\,\theta
+ \cot \theta = \frac{1}{{{\rm{cosec}}\,\theta - \cot \theta }} = \frac{1}{2}\)
Adding the two equations, we have
\(2{\rm{cosec}}\,\theta = 2 + \frac{1}{2} \Rightarrow \color{blue}{{\rm{cosec}}\,\theta = \frac{5}{4}}\)
Question 43: If the roots of the quadratic equation \({x^2} + px + q = 0\) are \(\tan {30^ \circ }\) and
\(\tan {15^ \circ }\), then the value of \(2 + p - q\) is:
(1) 3
(2) 0
(3) 1
(4) 2
Sum of the roots \(\tan 30 + \tan 15 = - p\) and
product of the roots \(\tan 30 \cdot \tan 15 = q\)
We know that \([1 + \tan \theta ][1 + \tan (45 - \theta )] = 2\)
\( \Rightarrow (1 + \tan 30)(1 + \tan 15) = 2\)
\( \Rightarrow 1
+ \tan 30 + \tan 15 + \tan 30 \cdot \tan 15 = 2\)
Or \(1 - p + q = 2\)
\( \color{blue}{\Rightarrow 2 + p - q = 1}\)
Question 44: If \(\prod _{i = 1}^n\tan ({\alpha _i}) = 1\) , where \({\alpha _i} \in \left[ {0,\;\;\frac{\pi }{2}} \right]\,\,\forall i = 1,2, \ldots \ldots n\), then the maximum value of \(\prod _{i = 1}^n\sin ({\alpha _i})\) is:
(1) \({2^{ - n}}\)
(2) \({2^{ - \frac{n}{2}}}\)
(3) 1
(4) None of these
Given that \(\left( {\tan {\alpha _1}} \right)\left( {\tan {\alpha _2}} \right).....\,\left( {\tan {\alpha _n}} \right) = 1\)
\( \Rightarrow \sin {\alpha _1}\sin {\alpha _2}.....\sin {\alpha _n} = \cos {\alpha _1}\cos {\alpha _2}....\cos {\alpha _n}\)
Multiplying by \(\sin {\alpha _1}\sin {\alpha _2}....\sin {\alpha _n}\) both sides,
\({\left( {\sin {\alpha _1}\sin {\alpha _2}.....\sin {\alpha _n}} \right)^2} = \left( {\sin {\alpha _1}\cos {\alpha _1}} \right)\left( {\sin {\alpha _2}\cos {\alpha _2}} \right)....\)
\( \Rightarrow {\left( {\sin {\alpha _1}\sin {\alpha _2}.....\sin {\alpha _n}} \right)^2} = \frac{1}{{{2^n}}}\left( {\sin 2{\alpha _1}} \right)\left( {\sin 2{\alpha _2}} \right)....\)
The value will be maximum at \({\alpha _1} = {\alpha _2} = .....\, = {\alpha _n} = \frac{\pi }{4}\)
Hence maximum value is \(\sqrt {\frac{1}{{{2^n}}}} = \frac{1}{{{2^{n/2}}}}\)
Question 45: The largest value of \({\rm{co}}{{\rm{s}}^2}\theta - 6{\rm{sin}}\theta {\rm{cos}}\theta + 3{\rm{si}}{{\rm{n}}^2}\theta + 2\) is
(1) – 4
(2) 0
(3) \(4 - \sqrt {10} \)
(4) \(4 + \sqrt {10} \)
The given expression can be written as
\(\frac{{1 + \cos 2\theta }}{2} - 3\sin 2\theta + \frac{3}{2}\left( {1 - \cos 2\theta } \right) + 2\)
\( = - 3\sin 2\theta - \cos 2\theta + 4\)
Hence maximum value = \(4 + \sqrt {{{( - 3)}^2} + {{( - 1)}^2}} = 4 + \sqrt {10} \)