Topic Wise Previous Year Questions

1. Trigonometry

1.1. Ratios and Identities

Questions are classified as Easy, Moderate, and Difficult. Symbols used for Easy, Moderate and Difficult questions:

  Easy
  Moderate
  Difficult

NIMCET 2008
Question  01:   The maximum value of \((\cos {\alpha _1})(\cos {\alpha _2}).....(\cos {\alpha _n})\) where \(0 \le {\alpha _1},\,{\alpha _2},\,{\alpha _3},\,...{\alpha _n} \le \pi \) and \((\cot {\alpha _1})(\cot {\alpha _2}).....(\cot {\alpha _n}) = 1\) is: 
(1) \(\frac{1}{{{2^{n/2}}}}\)
(2) \(\frac{1}{{{2^n}}}\)
(3) \(\frac{1}{{2n}}\)
(4) 1
Choice (2)

This questions can be solved quickly by taking \(n = 2\), then
\(\cot {\alpha _1}\cot {\alpha _2} = 1 \Rightarrow \cot {\alpha _1} = \tan {\alpha _2}\)
\( \Rightarrow \tan \left( {\frac{\pi }{2} - {\alpha _1}} \right) = \tan {\alpha _2}\) or \({\alpha _1} + {\alpha _2} = \frac{\pi }{2}\)
Now \((\cos {\alpha _1})(\cos {\alpha _2}) = \cos {\alpha _1}\cos \left( {\frac{\pi }{2} - {\alpha _1}} \right) = \cos {\alpha _1}\sin {\alpha _1}\)
\( = \frac{{\sin 2{\alpha _1}}}{2}\), and this value is maximum when \(2{\alpha _1} = 90\) or \({\alpha _1} = 45\)
Hence the maximum value occurs at \({\alpha _1} = {\alpha _2} = 45\)
Substituting the values \({\alpha _1} = {\alpha _2} = {\alpha _3} = ......{\alpha _n} = \frac{\pi }{4}\), then maximum value of \((\cos {\alpha _1})(\cos {\alpha _2}).....(\cos {\alpha _n})\) is \({\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = \frac{1}{{{2^{n/2}}}}\)
Alternate Solution: Given that \(\frac{{\cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}}}{{\sin {\alpha _1}\sin {\alpha _2}\sin {\alpha _3}......\sin {\alpha _n}}} = 1\)
\( \Rightarrow \cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}\)
= \(\sin {\alpha _1}\sin {\alpha _2}\sin {\alpha _3}......\sin {\alpha _n}\)
\(\Rightarrow {\left( {\cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}} \right)^2}\)
= \(\left( {\cos {\alpha _1}\sin {\alpha _1}} \right)\left( {\cos {\alpha _2}\sin {\alpha _2}} \right)......\left( {\cos {\alpha _n}\sin {\alpha _n}} \right)\)
Using \(\cos \theta \sin \theta = \frac{{\sin 2\theta }}{2}\), we have
\({\left( {\cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}} \right)^2} = \frac{{\left( {\sin 2{\alpha _1}} \right)\left( {\sin 2{\alpha _2}} \right)......\left( {\sin 2{\alpha _n}} \right)}}{{{2^n}}}\)
As maximum values of \(\sin 2\alpha_1 = \sin 2{\alpha _2} = .... = 1\), hence
\({\left( {\cos {\alpha _1}\cos {\alpha _2}\cos {\alpha _3}......\cos {\alpha _n}} \right)^2} \le \frac{1}{{{2^n}}}\)

 Click on Answer or Solution
Question  02:   If (1+ tan 1°) (1+ tan 2°) ……….. (1+ tan 45°) = \({2^n}\), then the value of \(n\) is:
(1) 21
(2) 22
(3) 23
(4) 24
Choice (3)

We know that
\((1 + \tan \theta )[1 + \tan (45 - \theta )] = (1 + \tan \theta )\left( {1 + \frac{{\tan 45 - \tan \theta }}{{1 + \tan 45\tan \theta }}} \right)\)
\( = (1 + \tan \theta )\left( {\frac{{1 + \tan \theta + 1 - \tan \theta }}{{1 + \tan \theta }}} \right) = 2\)
\( \Rightarrow (1 + \tan {1^ \circ })(1 + \tan {44^ \circ }) = (1 + \tan {2^ \circ })(1 + \tan {43^ \circ }).. = 2\)
Hence the value of \(n = 23\).

 Click on Answer or Solution
Question  03:   The value of sin 12° sin 48° sin 54° is:
(1) sin 30°
(2) \({\sin ^2}{30^ \circ }\)
(3) \({\sin ^3}{30^ \circ }\)
(4) \({\cos ^3}{30^ \circ }\)
Choice (3)

We know that \(\sin \theta \cdot \sin (60 - \theta ) \cdot \sin (60 + \theta ) = \frac{{\sin 3\theta }}{4}\)
The expression in the question can be written as
\(\sin 12\sin 48\sin 54 = \frac{{\sin 12\sin 48\sin 72\sin 54}}{{\sin 72}}\)
\( = \frac{{\sin 36\sin 54}}{{4\sin 72}} = \frac{{2\sin 36\sin 54}}{{8\sin 72}}\)
\(\frac{{\sin 72}}{{8\sin 72}} = \frac{1}{8} = {\sin ^3}30\)

 Click on Answer or Solution
Question  04:   If \(\cos \alpha + \cos \beta = a,\;\sin \alpha + \sin \beta = b\) and \(\theta \) is the arithmetic mean between \(\alpha \) and \(\beta \), then \(\sin 2\theta + \cos 2\theta \) is equal to:
(1) \(\) \(\frac{{{{(a + b)}^2}}}{{{{(a - b)}^2}}}\)
(2) \(\frac{{{{(a - b)}^2}}}{{{{(a + b)}^2}}}\)\(\)
(3) \(\frac{{{a^2} - {b^2}}}{{{a^2} + {b^2}}}\)
(4) None of these
Choice (4)

Given that \(2\cos \left( {\cfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\cfrac{{\alpha - \beta }}{2}} \right) = a\)
\(2\sin \left( {\cfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\cfrac{{\alpha - \beta }}{2}} \right) = b\)
Dividing second equation be first, we get
\(\cfrac{{\sin \left( {\cfrac{{\alpha + \beta }}{2}} \right)}}{{\cos \left( {\cfrac{{\alpha + \beta }}{2}} \right)}} = \cfrac{b}{a} \Rightarrow \tan \left( {\cfrac{{\alpha + \beta }}{2}} \right) = \cfrac{b}{a}\)
Using the formula,
\(\sin 2\theta = \cfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }},\;\;\cos 2\theta = \cfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\)
\(\sin 2\theta + \cos 2\theta = \cfrac{{2\tan \theta + 1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\)
\( = \cfrac{{\cfrac{{2b}}{a} + 1 - \cfrac{{{b^2}}}{{{a^2}}}}}{{1 + \cfrac{{{b^2}}}{{{a^2}}}}} = \cfrac{{{a^2} + 2ab - {b^2}}}{{{a^2} + {b^2}}}\)

 Click on Answer or Solution
NIMCET 2009
Question  05:   If \(A = {\cos ^2}\theta + {\sin ^4}\theta \), then for all values of \(\theta \).
(1) \(1 \le A \le 2\)
(2) \(\frac{{13}}{{16}} \le A \le 1\)
(3) \(\frac{3}{4} \le A \le \frac{{13}}{{16}}\)
(4) \(\frac{3}{4} \le A \le 1\)
Choice (4)

\(A = 1 - {\sin ^2}\theta + {\sin ^4}\theta = 1 - {\sin ^2}\theta (1 - {\sin ^2}\theta )\)
\( \Rightarrow A = 1 - {\sin ^2}\theta {\cos ^2}\theta \)
\( \Rightarrow A = 1 - \frac{{{{\sin }^2}2\theta }}{4}\)
Since, \(0 \le {\sin ^2}2\theta \le 1\), hence \(\frac{3}{4} \le A \le 1\)

 Click on Answer or Solution
NIMCET 2010
Question  06:   The value of \(\sqrt 3 \)cot 20° – 4 cos 20° is
(1) 1
(2) –1
(3) 0
(4) none of these
Choice (1)

Adding 1 and subtracting 1,
\(\cfrac{{\sqrt 3 \cos 20}}{{\sin 20}} - 1 + 1 - 4\cos 20\)
\( = \cfrac{{\sqrt 3 \cos 20 - \sin 20}}{{\sin 20}} + 1 - 4\cos 20\)
\( = \cfrac{{2\left( {\cfrac{{\sqrt 3 }}{2}\cos 20 - \cfrac{1}{2}\sin 20} \right)}}{{\sin 20}} + 1 - 4\cos 20\)
\( = \cfrac{{2(\sin 60\cos 20 - \cos 60\sin 20)}}{{\sin 20}} + 1 - 4\cos 20\)
\( = \cfrac{{2\sin 40}}{{\sin 20}} + 1 - 4\cos 20 = 4\cos 20 + 1 - 4\cos 20\) = 1

 Click on Answer or Solution
NIMCET 2011
Question  07:   If \(\tan \theta = \cfrac{b}{a},\)then the value of \(a\cos 2\theta + b\sin 2\theta \) is
(1) \(b\)
(2) \(a\)
(3) \(\cfrac{a}{b}\)
(4) \(\cfrac{a}{{a + b}}\)
Choice (2)

Using the formula,
\(\sin 2\theta = \cfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }},\;\;\cos 2\theta = \cfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\)
\(a\cos 2\theta + b\sin 2\theta = a\left( {\cfrac{{1 - \cfrac{{{b^2}}}{{{a^2}}}}}{{1 + \cfrac{{{b^2}}}{{{a^2}}}}}} \right) + b\left( {\cfrac{{2\cfrac{b}{a}}}{{1 + \cfrac{{{b^2}}}{{{a^2}}}}}} \right)\)
\( = a\left( {\cfrac{{{a^2} - {b^2} + 2{b^2}}}{{{a^2} + {b^2}}}} \right) = a\)

 Click on Answer or Solution
Question  08:   The value of \(\cfrac{{1 - {{\tan }^2}15^\circ }}{{1 + {{\tan }^2}15^\circ }}\) is
(1) 1
(2) \(\sqrt 3 \)
(3) \(\cfrac{{\sqrt 3 }}{2}\)
(4) 2
Choice (3)

We know that \(\cos 2\theta = \cfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\)
Hence \(\cfrac{{1 - {{\tan }^2}15^\circ }}{{1 + {{\tan }^2}15^\circ }} = \cos 30 = \cfrac{{\sqrt 3 }}{2}\)

 Click on Answer or Solution
Question  09:   If \(\sin x,\,\cos x\) and \(\tan x\) are in GP, then the value of \(\cot {\,^6}x - {\cot ^2}x\) is:
(1) 2
(2) –1
(3) 1
(4) 0
Choice (3)

Given that \(\sin x,\;\cos x,\;\tan x\)are in GP, then
\({\cos ^2}x = \sin x \cdot \tan x \Rightarrow {\cos ^3}x = {\sin ^2}x\)
Or \({\cot ^3}x = \frac{1}{{\sin x}} = {\rm{cosec}}\,x\)
\( \Rightarrow {\cot ^6}x = {\rm{cosec}}{\,^2}x\)
Therefore \({\cot ^6}x - {\cot ^2}x = {\rm{cose}}{{\rm{c}}^2}x - {\cot ^2}x = 1\)

 Click on Answer or Solution
Question  10:   The value of \(\sin 30\cos 45 + \cos 30\sin 45\) is:
(1) \(\frac{{1 - \sqrt 3 }}{2}\)
(2) \(\frac{{1 + \sqrt 3 }}{{2\sqrt 2 }}\)
(3) \(\frac{2}{{\sqrt 3 }}\)
(4) \(\frac{{\sqrt 3 }}{2}\)
Choice (2)

\(\sin 30\cos 45 + \cos 30\sin 45 = \frac{1}{2} \times \frac{1}{{\sqrt 2 }} + \frac{{\sqrt 3 }}{2} \times \frac{1}{{\sqrt 2 }}\)
\( = \frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\)

 Click on Answer or Solution
NIMCET 2012
Question  11:   If \(A - B = \cfrac{\pi }{4}\), then (1 + tan A)(1 – tan B) is equal to:
(1) 2
(2) 1
(3) 0
(4) 3
Choice (1)

Given that \(A - B = \cfrac{\pi }{4}\)
\( \Rightarrow \tan (A - B) = \tan \cfrac{\pi }{4}\)
\( \Rightarrow \cfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} = 1\)
or tan A – tan B = 1 + tan A tan B
or tan A – tan B – tan A tan B = 1
Adding 1 on both sides
(1+ tan A) – tan B(1 + tan A) = 2
(1+ tan A)(1– tan B) = 2

 Click on Answer or Solution
Question  12:   Which of the following is correct?
(1) sin 1° > sin 1
(2) sin 1° < sin 1
(3) sin 1° = sin 1
(4) \(\sin 1^\circ = \frac{\pi }{{180}}\sin 1\)
Choice (2)

We know that 1 radian is approximately 57°. Clearly sin 1 > sin 1°.

 Click on Answer or Solution
Question  13:   If \(\cos (\alpha + \beta ) = \cfrac{4}{5}\) and sin (a – b) = \(\sin (\alpha - \beta ) = \cfrac{5}{{13}},\) \(0 < \alpha ,\,\;\beta < \cfrac{\pi }{4},\) then \(\tan 2\alpha \) is:
(1) \(\cfrac{{56}}{{33}}\)
(2) \(\cfrac{{63}}{{65}}\)
(3) \(\cfrac{{16}}{{63}}\)
(4) \(\cfrac{{33}}{{56}}\)
Choice (1)

Given that \(\cos (\alpha + \beta ) = \cfrac{4}{5}\) and \(\sin (\alpha - \beta ) = \cfrac{5}{{13}}\)
Thus \(\tan (\alpha + \beta ) = \cfrac{3}{4}\) and \(\tan (\alpha - \beta ) = \cfrac{5}{{12}}\)
Now \(\tan 2\alpha = \tan \left( {\left( {\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right)\)
\( = \cfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\,\tan \left( {\alpha - \beta } \right)}}\)
\( = \cfrac{{\cfrac{3}{4} + \cfrac{5}{{12}}}}{{1 - \cfrac{3}{4} \times \cfrac{5}{{12}}}} = \cfrac{{\cfrac{{27 + 15}}{{36}}}}{{1 - \cfrac{5}{{16}}}} = \cfrac{{\cfrac{{42}}{{36}}}}{{\cfrac{{11}}{{16}}}} = \cfrac{{56}}{{33}}\)

 Click on Answer or Solution
Question  14:   If \({\sin ^2}x = 1 - \sin x,\) then \({\cos ^4}x + {\cos ^2}x = \)
(1) 0
(2) 1
(3) \(\frac{2}{3}\)
(4) –1
Choice (2)

From the give equation,
\(1 - {\cos ^2}x = 1 - \sin x\)or \({\cos ^2}x = \sin x\)
Squaring it again we get the answer
\({\cos ^4}x = 1 - {\cos ^2}x\)\( \Rightarrow {\cos ^4}x + {\cos ^2}x = 1\).
(This question is again repeated in NIMCET 2013)

 Click on Answer or Solution
Question  15:   If \(\sin (\pi \cos \theta ) = \cos (\pi \sin \theta )\), then \(\sin 2\theta \) is:
(1) \( \pm \frac{3}{4}\)
(2) \( \pm \frac{1}{4}\)
(3) \( \pm \frac{1}{4}\)
(4) \( \pm \frac{4}{3}\)
Choice (1)

Given that \(\sin (\pi \cos \theta ) = \cos (\pi \sin \theta )\)
\( \Rightarrow \sin (\pi \cos \theta ) = \sin \left( {\frac{\pi }{2} \pm \pi \sin \theta } \right)\)
\( \Rightarrow \pi \cos \theta = \frac{\pi }{2} \pm \pi \sin \theta \)
\( \Rightarrow \cos \theta \mp \sin \theta = \frac{1}{2}\)
Squaring both the sides,
\({\cos ^2}\theta + {\sin ^2}\theta \pm 2\sin \theta \cos \theta = \frac{1}{4}\)
or \(\sin 2\theta = \pm \frac{3}{4}\)

 Click on Answer or Solution
NIMCET 2013
Question  16:   If \(\sin x + a\cos x = b\), then what is the expression for \(|a\sin x - \cos x|\) in terms of \(a\) and \(b\)?
(1) \(\sqrt {{a^2} - {b^2} - 1} \)
(2) \(\sqrt {{a^2} + {b^2} - 1} \)
(3) \(\sqrt {{a^2} + {b^2} + 1} \)
(4) \(\sqrt {{a^2} - {b^2} + 1} \)
Choice (4)

Given that \(\sin x + a\cos x = b\), let \(a\sin x - \cos x = y\), squaring and adding both the equations,
\({(\sin x + a\cos x)^2} + {(a\sin x - \cos x)^2} = {b^2} + {y^2}\)
\( \Rightarrow {y^2} = 1 + {a^2} - {b^2}\) or \(|y|\, = \sqrt {{a^2} - {b^2} + 1} \)
(This question is again asked in NIMCET 2014)

 Click on Answer or Solution
Question  17:   The value of \(\tan \theta + 2\tan 2\theta + 4\tan 4\theta + 8\cot 8\theta \) is.
(1) \(\cot \theta \)
(2) \(\tan \theta \)
(3) \(\sin \theta \)
(4) \(\cos \theta \)
Choice (1)

This type of questions can be solved by putting a simple and suitable values of \(\theta \) both in the question and the answer choices. Here we can \(\theta = 0\) and the value of the expression in the question becomes infinity, in the choices except choice (1), all other choices are finite numbers, hence choice (1) is correct. Detailed solution is given below:
Subtracting and adding \(\cot \theta \), we have
\((\tan \theta - \cot \theta ) + 2\tan 2\theta + 4\tan 4\theta + 8\cot 8\theta + \cot \theta \)
Let us first simplify \(\tan \theta - \cot \theta \) as \(\frac{{\sin \theta }}{{\cos \theta }} - \frac{{\cos \theta }}{{\sin \theta }} = - \frac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}\)
\( = \frac{{ - \cos 2\theta }}{{\frac{{\sin 2\theta }}{2}}} = - 2\cot 2\theta \)
Hence \(\tan \theta - \cot \theta = - 2\cot 2\theta \), in the same manner,
\(2\tan 2\theta - 2\cot 2\theta = - 4\cot 4\theta \) and so on.
Proceeding in the same manner, we get the value of the expression as \(\cot \theta \).

 Click on Answer or Solution
Question  18:   If \(\tan \alpha = \frac{m}{{m + 1}}\) and \(\tan \beta = \frac{1}{{2m + 1}}\) then \(\alpha + \beta \) is equal to
(1) \(\frac{\pi }{3}\)
(2) \(\frac{\pi }{4}\)
(3) \(\frac{\pi }{6}\)
(4) \(\pi \)
Choice (2)

\(\tan (\alpha + \beta ) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}\)
\( = \frac{{\frac{m}{{m + 1}} + \frac{1}{{2m + 1}}}}{{1 - \left( {\frac{m}{{m + 1}}} \right)\left( {\frac{1}{{2m + 1}}} \right)}} = \frac{{2{m^2} + 2m + 1}}{{2{m^2} + 2m + 1}} = 1\)
\( \Rightarrow \alpha + \beta = \frac{\pi }{4}\)

 Click on Answer or Solution
NIMCET 2014
Question  19:   The value of sin 20° sin 40° sin 80° is:
(1) \(\frac{1}{2}\)
(2) \(\frac{{\sqrt 3 }}{2}\)
(3) \(\frac{{\sqrt 3 }}{8}\)
(4) \(\frac{1}{8}\)
Choice (3)

We know that \(\sin \theta \sin (60 - \theta )\sin (60 + \theta ) = \cfrac{{\sin 3\theta }}{4}\)
\( \Rightarrow \sin 20\sin 40\sin 80 = \frac{{\sin (3 \times 20)}}{4} = \frac{{\sqrt 3 }}{8}\)

 Click on Answer or Solution
Question  20:   If \(\tan A - \tan B = x,\;\cot B - \cot A = y\), then the value of \(\cot (A - B)\) is:
(1) \(\frac{1}{x} + \frac{1}{y}\)
(2) \(x + y\)
(3) \(\frac{1}{x} - \frac{1}{y}\)
(4) \( - \frac{1}{x} + \frac{1}{y}\)
Choice (1)

\(\cot B - \cot A = \cfrac{{\tan A - \tan B}}{{\tan A\tan B}} = y\)
Putting the value of \(\tan A - \tan B\), we get
\(\tan A\tan B = \frac{x}{y}\)
Now \(\tan (A - B) = \cfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} = \frac{x}{{1 + \frac{x}{y}}} = \frac{{xy}}{{x + y}}\)
Hence \(\cot (A - B) = \frac{{x + y}}{{xy}} = \frac{1}{x} + \frac{1}{y}\)

 Click on Answer or Solution
Question  21:   The value of tan 1° tan 2° tan 3°……… tan 88° tan 89° is:
(1) 0
(2) \(\frac{1}{{\sqrt 2 }}\)
(3) 1
(4) 2
Choice (1)

We know that tan (90 – x) = cot x, hence
tan 89° = tan(90° – 1) = cot 1°
Hence tan 1°. tan 89° = 1, tan 2°. tan 88° = 1 etc.
Except tan 45°, all the terms can be paired, hence the answer is 1.

 Click on Answer or Solution
NIMCET 2015
Question  22:   If \(P = {\sin ^{20}}\theta + {\cos ^{48}}\theta ,\) then the inequality that holds for all values of \(\theta \) is
(1) \(P \ge 1\)
(2) \(0 < P \le 1\)
(3) \(1 < P < 3\)
(4) \(0 \le P \le 1\)
Choice (2)

We know that \({\sin ^2}\theta + {\cos ^2}\theta = 1\), if we use higher powers of \(\sin \theta \) and \(\cos \theta \), then the answer will be less than or equal to 1. Also \(\sin \theta \) and \(\cos \theta \) are not simultaneously zero, thus \(0 < {\sin ^{20}}\theta + {\cos ^{48}}\theta \le 1\)

 Click on Answer or Solution
Question  23:   The value of \(\tan \left( {\frac{{7\pi }}{8}} \right)\) is
(1) \(1 - \sqrt 2 \)
(2) \(1 + \sqrt 2 \)
(3) \(\sqrt 2 + \sqrt 3 \)
(4) \(\sqrt 2 - \sqrt 3 \)
Choice (1)

Since \(\tan \left( {\frac{{7\pi }}{8}} \right) = - \tan \left( {\frac{\pi }{8}} \right)\)
Let is first calculate the value of \(\tan \left( {\frac{\pi }{8}} \right)\), using the formula \(\cos 2\theta = \cfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}\), we have
\(\cos \cfrac{\pi }{4} = \cfrac{{1 - {{\tan }^2}\left( {\frac{\pi }{8}} \right)}}{{1 + {{\tan }^2}\left( {\frac{\pi }{8}} \right)}}\)\( \Rightarrow {\tan ^2}\cfrac{\pi }{8} = \cfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} = {(\sqrt 2 - 1)^2}\)
Hence \(\tan \frac{\pi }{8} = \sqrt 2 - 1\) or \(\tan \left( {\frac{{7\pi }}{8}} \right) = - \tan \left( {\frac{\pi }{8}} \right) = 1 - \sqrt 2 \)

 Click on Answer or Solution
NIMCET 2016
Question  24:   If \(\cos \theta = \frac{5}{{13}},\frac{{3\pi }}{2} < \theta < 2\pi ,\) then \(\tan 2\theta \) is
(1) \(\frac{{ - 120}}{{119}}\)
(2) \(\frac{{ - 120}}{{169}}\)
(3) \(\frac{{119}}{{169}}\)
(4) \(\frac{{120}}{{119}}\)
Choice (4)

Given \(\cos \theta = \frac{5}{{13}},\frac{{3\pi }}{2} < \theta < 2\pi \)
we know than \(\tan 2\theta = \frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\) [\(3\pi < 2\theta < 4\pi \)]
so, \(\tan \theta = \frac{{ - 12}}{5}\)
\(\therefore \tan 2\theta = \frac{{2 \times \left( {\frac{{ - 2}}{5}} \right)}}{{1 \times {{\left( {\frac{{ - 12}}{5}} \right)}^2}}}\)= \(\frac{{120}}{{119}}\)

 Click on Answer or Solution
Question  25:   The value of cos 20° + cos 100° + cos 140° is
(1) 0
(2) \(\frac{1}{{\sqrt 2 }}\)
(3) \(\frac{1}{2}\)
(4) 1
Choice (1)

The expression cos 20° + cos 100° + cos 140° can be simplified as:
\( = 2\cos \left( {\frac{{20 + 100}}{2}} \right)\cos \left( {\frac{{100 - 20}}{2}} \right) + \cos 140\)
\( = 2\cos 60\cos 40 + \cos 140\)
\( = \cos 40 + \cos 140\)
\( = \cos 40 + \cos (180 - 40) = 0\)

 Click on Answer or Solution
NIMCET 2017
Question  26:   If \(\tan x = \frac{{ - 3}}{4}\) and \(\frac{{3\pi }}{2} < x < 2\pi \), then the value of \(\sin 2x\) is
(1) 7/25
(2) – 7/25
(3) 24/25
(4) – 24/25
Choice (4)

Given that \(\tan x = \frac{{ - 3}}{4}\) and \(\frac{{3\pi }}{2} < x < 2\pi \)
means \(x\) lies in fourth quadrant
Then \(\sin x = - \frac{3}{5}\) and \(\cos x = \frac{4}{5}\)
Now \(\sin 2x = 2\sin x\cos x\)
\(\sin 2x = - 2 \times \frac{3}{5} \times \frac{4}{5} = - \frac{{24}}{{25}}\)

 Click on Answer or Solution
Question  27:   If \(\cos \theta = \frac{4}{5}\) and \(\cos \varphi = \frac{{12}}{{13}}\), with \(\theta \) and \(\varphi \) both in the fourth quadrant, the value of \(\cos (\theta + \phi )\) is:
(1) \( - \frac{{16}}{{65}}\)
(2) \( - \frac{{33}}{{65}}\)
(3) \(\frac{{33}}{{65}}\)
(4) \(\frac{{16}}{{65}}\)
Choice (3)

Given that \(\cos \theta = \frac{4}{5},\;\cos \varphi \frac{{12}}{{13}}\)
Given that \(\theta \), and \(\phi \)both lies in fourth quadrant then
\(\sin \theta = \frac{{ - 3}}{5}\) and \(\sin \phi = \frac{{ - 5}}{{13}}\)
Now, \(\cos (\theta + \phi ) = \cos \theta \cos \phi - \sin \theta \sin \phi \)
= \(\frac{4}{5} \times \frac{{12}}{{13}} - \left( {\frac{{ - 3}}{5}} \right)\left( {\frac{{ - 5}}{{13}}} \right)\)
= \(\frac{{48}}{{65}} - \frac{{15}}{{65}} = \frac{{33}}{{65}}\)

 Click on Answer or Solution
Question  28:   The value of sin 36° is
(1) \(\frac{{\sqrt {10 + 2\sqrt 5 } }}{4}\)
(2) \(\frac{{\sqrt {10 - 2\sqrt 5 } }}{4}\)
(3) \(\frac{{\left( {\sqrt 5 + 1} \right)}}{4}\)
(4) \(\frac{{\left( {\sqrt 5 - 1} \right)}}{4}\)
Choice (2)

It is a standard result, the value is \(\frac{{\sqrt {10 - 2\sqrt 5 } }}{4}\). This question can one by eliminating the choice. As sin 36° lies between sin 30° and sin 45°, so the answer is more than \(\frac{1}{2}\) and less than \(\frac{1}{{\sqrt 2 }}\). Only choice (2) is in this range.

 Click on Answer or Solution
Question  29:   Express (cos 5x – cos7x) as a product of sines or cosines or sines and cosines,
(1) 2 cos 4x cos x
(2) 2 sin 4x sin x
(3) 2 sin 6x sin x
(4) 2 cos 6 x cos x
Choice (3)

\(\cos C - \cos D = 2\sin \left( {\frac{{C + D}}{2}} \right)\sin \left( {\frac{{D - C}}{2}} \right)\)
\(\cos 5x - \cos 7x = 2\sin \left( {\frac{{5x + 7x}}{2}} \right)\sin \left( {\frac{{7x - 5x}}{2}} \right)\)
= \( = 2\sin 6x\sin x\)

 Click on Answer or Solution
Question  30:   The maximum value of \(4{\sin ^2}x + 3{\cos ^2}x + \sin \,x/2 + \cos x/2\) is:
(1) 4
(2) \(3 + \sqrt 2 \)
(3) 9
(4) \(4 + \sqrt 2 \)
Choice (4)

Given \(y = 4{\sin ^2}x + 3{\cos ^2}x + \sin \,x/2 + \cos x/2\)
\( \Rightarrow y = 3 + {\sin ^2}x + \sin \,\frac{x}{2} + \cos \frac{x}{2}\)
We know that \(\sin \frac{x}{2} + \cos \frac{x}{2}\) is maximum when \(\frac{x}{2} = \frac{\pi }{4}\) or \(x = \frac{\pi }{2}\) and at \(x = \frac{\pi }{2}\), \(\sin x\) is also maximum.
So maximum value of expression is \(3 + 1 + \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }} = 4 + \sqrt 2 \)

 Click on Answer or Solution
NIMCET 2018
Question  31:   If \(\sin \theta = 3\sin (\theta + 2\alpha )\), then the value of \(\tan (\theta + \alpha ) + 2\tan \alpha \) is:
(1) 3
(2) 2
(3) – 1
(4) 0
Choice (4)

Rewrite the equation as \(\sin (\theta + \alpha - \alpha ) = 3\sin (\theta + \alpha + \alpha )\)
\( \Rightarrow \sin (\theta + \alpha )\cos \alpha - \cos (\theta + \alpha )\sin \alpha \)
\(\;\;\;\; = 3\sin (\theta + \alpha )\cos \alpha + 3\cos (\theta + \alpha )\sin \alpha \)
Dividing by \(\cos (\theta + \alpha )\cos \alpha \), we have
\(\tan (\theta + \alpha ) - \tan \alpha = 3\tan (\theta + \alpha ) + 3\tan \alpha \)
\( \Rightarrow \tan (\theta + \alpha ) + 2\tan \alpha = 0\)

 Click on Answer or Solution
Question  32:   In an acute-angled triangle ABC, the minimum value of \(\sec A + \sec B + \sec C\) is:
(1) 2
(2) 3
(3) 6
(4) 8
Choice (3)

We can apply Jensen’s inequality to get,
\(\sec \left( {\frac{{A + B + C}}{3}} \right) \le \,\,\left( {\frac{{\sec A + \sec B + \sec C}}{3}} \right)\)
\( \Rightarrow \sec A + \sec B + \sec C \ge 3\sec 60\)
Hence minimum value of \(\sec A + \sec B + \sec C\) is 6.
This question can also be done just by putting A = B = C = 60°.

 Click on Answer or Solution
Question  33:   If \(\frac{{\tan x}}{2} = \frac{{\tan y}}{3} = \frac{{\tan z}}{5}\) and \(x + y + z = \pi \), then the value of \({\tan ^2}x + {\tan ^2}y + {\tan ^2}z\) is:
(1) \(\frac{{38}}{3}\)
(2) 38
(3) 114
(4) None of these
Choice (1)

Suppose \(\frac{{\tan x}}{2} = \frac{{\tan y}}{3} = \frac{{\tan z}}{5} = k\), then \(\tan x = 2k,\;\tan y = 3k,\;\tan z = 5k\)
In a triangle, \(\tan x + \tan y + \tan z = \tan x\tan y\tan z\)
\( \Rightarrow 2k + 3k + 5k = (2k)(3k)(5k)\) or \(k = \pm \frac{1}{{\sqrt 3 }}\)
Now \({\tan ^2}x + {\tan ^2}y + {\tan ^2}z = (4 + 9 + 25){k^2}\)
\( = \frac{{38}}{3}\)

 Click on Answer or Solution
NIMCET 2019
Question  34:   If A > 0, B > 0 and A + B = \(\frac{\pi }{6}\), then the minimum value of tan A + tan B is
(1) \(\sqrt 3 - \sqrt 2 \)
(2) \(4 - 2\sqrt 3 \)
(3) \(\frac{2}{{\sqrt 3 }}\)
(4) \(2 - \sqrt 3 \)
Choice (2)

Using Jensen's Inequality,
Jensen's Inequality
\(\tan \left( {\frac{{A + B}}{2}} \right) \le \frac{{\tan A + \tan B}}{2}\)
\( \Rightarrow \frac{{\tan A + \tan B}}{2} \ge \tan 15\)
\( \Rightarrow \tan A + \tan B \ge 2\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)\)
\(\;\;\;\;\;\;\;\;\;\; \ge 2\left( {\frac{{(\sqrt 3 - 1)(\sqrt 3 - 1)}}{{(\sqrt 3 + 1)(\sqrt 3 - 1)}}} \right) \ge 4 - 2\sqrt 3 \)

 Click on Answer or Solution
NIMCET 2020
Question  35:   If cos x = tan y, cot y = tan z and cot z = tan x, then sin x is:
(1) \(\frac{{\sqrt 5 + 1}}{2}\)
(2) \(\frac{{\sqrt 5 - 1}}{2}\)
(3) \(\frac{{\sqrt 5 + 1}}{4}\)
(4) \(\frac{{\sqrt 5 - 1}}{4}\)
Choice (2)

Eliminating \(y\) from the given relations,
\(\cos x = \tan y = \frac{1}{{\cot y}} = \frac{1}{{\tan z}} = \cot z = \tan x\)
\( \Rightarrow \cos x = \tan x\)
Or \(\sin x = {\cos ^2}x = 1 - {\sin ^2}x\)
\( \Rightarrow \sin x = \frac{{ - 1 + \sqrt 5 }}{2}\)

 Click on Answer or Solution
Question  36:   The value of \(\tan \left( {45 + \frac{A}{2}} \right)\) is:
(1) \(\tan \theta - \sec \theta \)
(2) \(\tan \theta + \sec \theta \)
(3) \(\cot \theta - \sec \theta \)
(4) \(\cot \theta + \sec \theta \)
Choice (2)

\(\tan \left( {45 + \frac{\theta }{2}} \right) = \frac{{1 + \tan \frac{\theta }{2}}}{{1 - \tan \frac{\theta }{2}}}\)
\( = \frac{{\sin \frac{\theta }{2} + \cos \frac{\theta }{2}}}{{\cos \frac{\theta }{2} - \sin \frac{\theta }{2}}} = \frac{{{{\left( {\sin \frac{\theta }{2} + \cos \frac{\theta }{2}} \right)}^2}}}{{{{\cos }^2}\frac{\theta }{2} - {{\sin }^2}\frac{\theta }{2}}}\)
\( = \frac{{1 + \sin \theta }}{{\cos \theta }} = \sec \theta + \tan \theta \)

 Click on Answer or Solution
Question  37:   The value of sin 10°sin 50°sin 70° is:
(1) 1/4
(2) 1/2
(3) 3/4
(4) 1/8
Choice (4)

The value of \(\sin 10\sin 50\sin 70\)
\( = \frac{{\sin (3 \times 10)}}{4} = \frac{1}{8}\)
(using \(\sin \theta \sin (60 - \theta )\sin (60 + \theta ) = \frac{{\sin 3\theta }}{4}\))

 Click on Answer or Solution
Question  38:   The expression \(\frac{{\tan A}}{{1 - \cot A}} + \frac{{\cot A}}{{1 - \tan A}}\) can be written as:
(1) sin A cos A + 1
(2) sec A cosec A + 1
(3) tan A + cot A
(4) sec A + cosec A
Choice (2)

The expression can be written as,
\(\frac{{{{\tan }^2}A}}{{\tan A - 1}} + \frac{{\cot A}}{{1 - \tan A}}\)
\( = \frac{1}{{\tan A - 1}}\left( {{{\tan }^2}A - \cot A} \right) = \frac{{{{\tan }^3}A - 1}}{{\tan A(\tan A - 1)}}\)
\( = \frac{{1 + {{\tan }^2}A + \tan A}}{{\tan A}} = 1 + \frac{{{{\sec }^2}A}}{{\tan A}}\)
\( = 1 + \sec A\,{\rm{cosec}}\,A\)

 Click on Answer or Solution
Question  39:   If \(3\sin x + 4\cos x = 5\), then \(6\tan \frac{x}{2} - 9{\tan ^2}\frac{x}{2}\) is:
(1) 1
(2) 3 (3)4
(3) 4
(4) 6
Choice (1)

Using the formula, \(\sin x = \frac{{2\tan (x/2)}}{{1 + {{\tan }^2}(x/2)}}\) and \(\cos x = \frac{{1 - {{\tan }^2}(x/2)}}{{1 + {{\tan }^2}(x/2)}}\)
Let us assume \(\tan \,(x/2) = t\), then
\(3\left( {\frac{{2t}}{{1 + {t^2}}}} \right) + 4\left( {\frac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = 5\)
\( \Rightarrow 9{t^2} - 6t + 1 = 0\)
Or \(6\tan (x/2) - 9{\tan ^2}(x/2) = 1\)

 Click on Answer or Solution
NIMCET 2021
Question  40:   In \(\Delta ABC\) if \({\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + {\tan ^2}\frac{C}{2} = k,\) then \(k\) is always:
(1) > 1
(2) ≥ 1
(3) = 2
(4) = 1
Choice (2)

We can put values of the angles A, B and C to get an idea about the value of \(k\), put A = B = C = 60°,
\(k = {\tan ^2}30 + {\tan ^2}30 + {\tan ^2}30 = 1\)
Put another set of values A = B = 30° and C = 120°,
\(k = {\tan ^2}15 + {\tan ^2}15 + {\tan ^2}45 > 1\)
Hence \(k \ge 1\)

 Click on Answer or Solution
Question  41:   The value of tan 9° – tan 27° – tan 63° + tan 81° is equal to:
(1) 5
(2) 3
(3) 4
(4) 6
Choice (3)

tan 9° – tan 27° – tan 63° + tan 81°
= \(\cfrac{{\sin 9^\circ }}{{\cos 9^\circ }} - \cfrac{{\sin 27^\circ }}{{\cos 27^\circ }} - \left[ {\cfrac{{\sin {{63}^ \circ }}}{{\cos {{63}^ \circ }}} - \cfrac{{\sin 81^\circ }}{{\cos 81^\circ }}} \right]\) = A – B
Where A = \(\left( {\cfrac{{\sin {9^ \circ }\cos {{27}^ \circ } - \cos {9^ \circ }\sin {{27}^ \circ }}}{{\cos {9^ \circ }\cos {{27}^ \circ }}}} \right) = \cfrac{{ - \sin {{18}^ \circ }}}{{\cos {9^ \circ }\cos {{27}^ \circ }}}\)\( = \cfrac{{ - 2\sin {9^ \circ }}}{{\cos {{27}^ \circ }}}\)
B = \(\cfrac{{\sin {{63}^ \circ }\cos {{81}^ \circ } - \sin {{81}^ \circ }\cos {{63}^ \circ }}}{{\cos {{63}^ \circ }\cos {{81}^ \circ }}}\)\( = \cfrac{{ - \sin {{18}^ \circ }}}{{\sin {{27}^ \circ }\sin {9^ \circ }}} = \cfrac{{ - 2\cos {9^ \circ }}}{{\sin {{27}^ \circ }}}\)
Hence A – B = \(\cfrac{{2\cos {9^ \circ }}}{{\sin {{27}^ \circ }}} - \cfrac{{2\sin {9^ \circ }}}{{\cos {{27}^ \circ }}}\)\( = \cfrac{{2\left( {\cos {9^ \circ }\cos {{27}^ \circ } - \sin {9^ \circ }\sin {{27}^ \circ }} \right)}}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}\)
\( = \cfrac{{2\cos {{36}^ \circ }}}{{\left( {\cfrac{{\sin {{54}^ \circ }}}{2}} \right)}} = \cfrac{{4\cos {{36}^ \circ }}}{{\sin {{54}^ \circ }}}\) = 4.

 Click on Answer or Solution
NIMCET 2022
Question  42:   If \({\rm{cosec}}\,\theta - \cot \theta = 2\), then the value of \({\rm{cosec}}\,\theta \) is:
(1) \(\frac{5}{3}\)
(2) \(\frac{3}{5}\)
(3) \(\frac{4}{5}\)
(4) \(\frac{5}{4}\)
Choice (4)

We know that \({\rm{cose}}{{\rm{c}}^2}\,\theta - {\cot ^2}\theta = 1\)
Hence \(({\rm{cosec}}\,\theta + \cot \theta )({\rm{cosec}}\,\theta - \cot \theta ) = 1\)
Given that \({\rm{cosec}}\,\theta - \cot \theta = 2\)
\( \Rightarrow {\rm{cosec}}\,\theta + \cot \theta = \frac{1}{{{\rm{cosec}}\,\theta - \cot \theta }} = \frac{1}{2}\)
Adding the two equations, we have
\(2{\rm{cosec}}\,\theta = 2 + \frac{1}{2} \Rightarrow \color{blue}{{\rm{cosec}}\,\theta = \frac{5}{4}}\)

 Click on Answer or Solution
Question  43:   If the roots of the quadratic equation \({x^2} + px + q = 0\) are \(\tan {30^ \circ }\) and \(\tan {15^ \circ }\), then the value of \(2 + p - q\) is:
(1) 3
(2) 0
(3) 1
(4) 2
Choice (3)

Sum of the roots \(\tan 30 + \tan 15 = - p\) and
product of the roots \(\tan 30 \cdot \tan 15 = q\)
We know that \([1 + \tan \theta ][1 + \tan (45 - \theta )] = 2\)
\( \Rightarrow (1 + \tan 30)(1 + \tan 15) = 2\)
\( \Rightarrow 1 + \tan 30 + \tan 15 + \tan 30 \cdot \tan 15 = 2\)
Or \(1 - p + q = 2\)
\( \color{blue}{\Rightarrow 2 + p - q = 1}\)

 Click on Answer or Solution
NIMCET 2023
Question  44:   If  \(\prod _{i = 1}^n\tan ({\alpha _i}) = 1\) , where \({\alpha _i} \in \left[ {0,\;\;\frac{\pi }{2}} \right]\,\,\forall i = 1,2, \ldots \ldots n\), then the maximum value of \(\prod _{i = 1}^n\sin ({\alpha _i})\) is:
(1) \({2^{ - n}}\)
(2) \({2^{ - \frac{n}{2}}}\)
(3) 1
(4) None of these
Choice (2)

Given that \(\left( {\tan {\alpha _1}} \right)\left( {\tan {\alpha _2}} \right).....\,\left( {\tan {\alpha _n}} \right) = 1\)
\( \Rightarrow \sin {\alpha _1}\sin {\alpha _2}.....\sin {\alpha _n} = \cos {\alpha _1}\cos {\alpha _2}....\cos {\alpha _n}\)
Multiplying by \(\sin {\alpha _1}\sin {\alpha _2}....\sin {\alpha _n}\) both sides,
\({\left( {\sin {\alpha _1}\sin {\alpha _2}.....\sin {\alpha _n}} \right)^2} = \left( {\sin {\alpha _1}\cos {\alpha _1}} \right)\left( {\sin {\alpha _2}\cos {\alpha _2}} \right)....\)
\( \Rightarrow {\left( {\sin {\alpha _1}\sin {\alpha _2}.....\sin {\alpha _n}} \right)^2} = \frac{1}{{{2^n}}}\left( {\sin 2{\alpha _1}} \right)\left( {\sin 2{\alpha _2}} \right)....\)
The value will be maximum at \({\alpha _1} = {\alpha _2} = .....\, = {\alpha _n} = \frac{\pi }{4}\)
Hence maximum value is \(\sqrt {\frac{1}{{{2^n}}}} = \frac{1}{{{2^{n/2}}}}\)

 Click on Answer or Solution
Question  45:   The largest value of \({\rm{co}}{{\rm{s}}^2}\theta - 6{\rm{sin}}\theta {\rm{cos}}\theta + 3{\rm{si}}{{\rm{n}}^2}\theta + 2\) is
(1) – 4
(2) 0
(3) \(4 - \sqrt {10} \)
(4) \(4 + \sqrt {10} \)
Choice (4)

The given expression can be written as
\(\frac{{1 + \cos 2\theta }}{2} - 3\sin 2\theta + \frac{3}{2}\left( {1 - \cos 2\theta } \right) + 2\)
\( = - 3\sin 2\theta - \cos 2\theta + 4\)
Hence maximum value = \(4 + \sqrt {{{( - 3)}^2} + {{( - 1)}^2}} = 4 + \sqrt {10} \)

 Click on Answer or Solution