Topic Wise Previous Year Questions

1. Trigonometry

1.2. Equations and Inverse Functions

Questions are classified as Easy, Moderate, and Difficult. Symbols used for Easy, Moderate and Difficult questions:

  Easy
  Moderate
  Difficult

NIMCET 2008
Question  01:   If \(y = {\sec ^{ - 1}}\left( {\frac{{x + 1}}{{x - 1}}} \right) + {\sin ^{ - 1}}\left( {\frac{{x - 1}}{{x + 1}}} \right),\) \(x \in [0,\infty ]\) and \(x \ne 1\), then \(\frac{{dy}}{{dx}}\) is equal to
(1) 1
(2) \(\frac{{x - 1}}{{x + 1}}\)
(3) 0
(4) \(\frac{{x + 1}}{{x - 1}}\)
Choice (3)

\({\sec ^{ - 1}}\left( {\frac{{x + 1}}{{x - 1}}} \right) = {\cos ^{ - 1}}\left( {\frac{{x - 1}}{{x + 1}}} \right)\)
Now y =\({\sec ^{ - 1}}\left( {\frac{{x + 1}}{{x - 1}}} \right) + {\sin ^{ - 1}}\left( {\frac{{x - 1}}{{x + 1}}} \right)\)
= \({\cos ^{ - 1}}\left( {\frac{{x - 1}}{{x + 1}}} \right) + {\sin ^{ - 1}}\left( {\frac{{x - 1}}{{x + 1}}} \right) = \pi /2\)
Hence \(dy/dx = 0\)

 Click on Answer or Solution
NIMCET 2009
Question  02:   If \(\theta = {\tan ^{ - 1}}\frac{1}{{1 + 2}} + {\tan ^{ - 1}}\frac{1}{{1 + (2)(3)}} + {\tan ^{ - 1}}\frac{1}{{1 + (3)(4)}} + ...... + {\tan ^{ - 1}}\frac{1}{{1 + n(n + 1)}}\) then \(\tan \theta \) is equal to:
(1) \(\frac{n}{{n + 1}}\)
(2) \(\frac{{n + 1}}{{n + 2}}\)
(3) \(\frac{n}{{n + 2}}\)
(4) \(\frac{{n - 1}}{{n + 2}}\)
Choice (3)

\({\tan ^{ - 1}}\left( {\frac{1}{{1 + 2}}} \right) = {\tan ^{ - 1}}\left( {\frac{{2 - 1}}{{1 + 1 \times 2}}} \right) = {\tan ^{ - 1}}2 - {\tan ^{ - 1}}1\)
\({\tan ^{ - 1}}\left( {\frac{1}{{1 + 2 \times 3}}} \right) = {\tan ^{ - 1}}\left( {\frac{{3 - 2}}{{1 + 2 \times 3}}} \right) = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}2\)
Writing all the terms in this manner, we have the last term as
\({\tan ^{ - 1}}\left( {\frac{1}{{1 + n(n + 1)}}} \right) = {\tan ^{ - 1}}\left( {\frac{{(n + 1) - n}}{{1 + n(n + 1)}}} \right) = {\tan ^{ - 1}}(n + 1) - {\tan ^{ - 1}}n\)
Adding all the terms, we get the required sum as
\({\tan ^{ - 1}}(n + 1) - {\tan ^{ - 1}}1 = {\tan ^{ - 1}}\left( {\frac{n}{{n + 2}}} \right)\)

 Click on Answer or Solution
Question  03:   If \({\sin ^{ - 1}}x + {\cos ^{ - 1}}(1 - x) = {\sin ^{ - 1}}( - x)\), then \(x\) satisfies the equation
(1) \(2{x^2} - x + 2 = 0\)
(2) \(2{x^2} - 3x = 0\)
(3) \(2{x^2} + x - 1 = 0\)
(4) None of these
Choice (4)

\({\sin ^{ - 1}}x + \frac{\pi }{2} - {\sin ^{ - 1}}(1 - x) = - {\sin ^{ - 1}}x\)
\( \Rightarrow {\sin ^{ - 1}}(1 - x) = \frac{\pi }{2} + 2{\sin ^{ - 1}}x\)
Let \({\sin ^{ - 1}}x = \theta \), then \({\sin ^{ - 1}}(1 - x) = \frac{\pi }{2} - 2\theta \)
\( \Rightarrow 1 - x = \sin \left( {\frac{\pi }{2} - 2\theta } \right)\)
Or \(1 - x = \cos 2\theta = 1 - 2{\sin ^2}\theta \)
Hence \(1 - x = 1 - 2{x^2} \Rightarrow 2{x^2} - x = 0\)

 Click on Answer or Solution
Question  04:   If \({\tan ^{ - 1}}2x + {\tan ^{ - 1}}3x = \frac{\pi }{4}\), then \(x\) is.
(1) \(\frac{1}{6}\)
(2) \(\frac{1}{3}\)
(3) \(\frac{1}{2}\)
(4) \(\frac{1}{4}\)
Choice (1)

\({\tan ^{ - 1}}\left( {\frac{{2x + 3x}}{{1 - 6{x^2}}}} \right) = \frac{\pi }{4}\)
\( \Rightarrow \frac{{5x}}{{1 - 6{x^2}}} = 1\) or \(6{x^2} + 5x - 1 = 0 \Rightarrow (6x - 1)(x + 1) = 0\)
\( \Rightarrow x = \frac{1}{6}\). Another roots \(x = - 1\) does not satisfy the equation.

 Click on Answer or Solution
Question  05:   The equation \({\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0\) is solvable for
(1) \( - \frac{1}{2} \le \alpha \le \frac{1}{2}\)
(2) \( - 3 \le \alpha \le 1\)
(3) \( - \frac{3}{2} \le \alpha \le \frac{1}{2}\)
(4) \( - 1 \le \alpha \le 1\)
Choice (3)

\(\alpha = - ({\sin ^4}x + {\cos ^4}x + \sin 2x)\)
\( \Rightarrow \alpha = - \left( {{{({{\sin }^2}x + {{\cos }^2}x)}^2} - 2{{\sin }^2}x{{\cos }^2}x + \sin 2x} \right)\)
\( \Rightarrow \alpha = - \left( {1 - \frac{{{{\sin }^2}2x}}{2} + \sin 2x} \right)\)
\( \Rightarrow \alpha = \frac{1}{2}{\left( {\sin 2x - 1} \right)^2} - \frac{3}{2}\)
The maximum and minimum values of \({(\sin 2x - 1)^2}\)can be 4 and 0, hence \( - \frac{3}{2} \le \alpha \le \frac{1}{2}\)

 Click on Answer or Solution
Question  06:   The number of solutions for \({\tan ^{ - 1}}\sqrt {x(x + 1)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}\) is
(1) zero
(2) one
(3) 2
(4) Infinite
Choice (2)

\({\tan ^{ - 1}}\sqrt {x(x + 1)} = \frac{\pi }{2} - {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} \)
\( \Rightarrow {\tan ^{ - 1}}\sqrt {x(x + 1)} = {\cos ^{ - 1}}(\sqrt {{x^2} + x + 1} )\)
Put \(x(x + 1) = y\), then
\({\tan ^{ - 1}}\sqrt y = {\cos ^{ - 1}}\sqrt {y + 1} = {\sec ^{ - 1}}\left( {\frac{1}{{\sqrt {y + 1} }}} \right)\)
Using \({\sec ^2}\theta = 1 + {\tan ^2}\theta \), we have
\(\frac{1}{{y + 1}} - 1 = y \Rightarrow y = 0,\, - 2\)
And the corresponding real values of \(x = 0,\, - 1\)

 Click on Answer or Solution
NIMCET 2010
Question  07:   If \({\sin ^{ - 1}}\frac{{2a}}{{1 + {a^2}}} - {\cos ^{ - 1}}\frac{{1 - {b^2}}}{{1 + {b^2}}} = {\tan ^{ - 1}}\frac{{2x}}{{1 - {x^2}}}\)then \(x\) is equal to
(1) \(a\)
(2) \(b\)
(3) \(\frac{{a + b}}{{1 - ab}}\)
(4) \(\frac{{a - b}}{{1 + ab}}\)
Choice (4)

The given equation is,
\(2{\tan ^{ - 1}}a - 2{\tan ^{ - 1}}b = 2{\tan ^{ - 1}}x\)
\( \Rightarrow 2{\tan ^{ - 1}}\left( {\frac{{a - b}}{{1 + ab}}} \right) = 2{\tan ^{ - 1}}x\) or \(x = \frac{{a - b}}{{1 + ab}}\)

 Click on Answer or Solution
NIMCET 2011
Question  08:   The general solution of \(\sqrt 3 \cos x + \sin x = 3\) is:
(1) \(2n\pi \pm \frac{\pi }{6}\)
(2) \(2n\pi \pm \frac{\pi }{3}\)
(3) No solution
(4) \(n\pi \pm \frac{\pi }{6}\)
Choice (3)

The maximum value of \(\sqrt 3 \cos x + \sin x\) is \(\sqrt {3 + 1} = 2\), hence there is no solution for the equation\(\sqrt 3 \cos x + \sin x = 3\).

 Click on Answer or Solution
Question  09:   The general value of \(\theta \) satisfying the equation \(2{\sin ^2}\theta - 3\sin \theta - 2 = 0\) is
(1) \(n\pi + {\left( { - 1} \right)^n}\frac{\pi }{6}\)
(2) \(n\pi + {\left( { - 1} \right)^n}\frac{\pi }{2}\)
(3) \(n\pi + {\left( { - 1} \right)^n}\frac{{5\pi }}{6}\)
(4) \(n\pi + {\left( { - 1} \right)^n}\frac{{7\pi }}{6}\)
Choice (4)

The equation \(2{\sin ^2}\theta - 3\sin \theta - 2 = 0\) can be factorized as \((2\sin \theta + 1)(\sin \theta - 2) = 0\)
Since \(\sin \theta \le 1\), hence \(\sin \theta = - \frac{1}{2}\)
Hence general value of \(\theta \)is, \(n\pi + {( - 1)^n}\frac{{7\pi }}{6}\)

 Click on Answer or Solution
NIMCET 2012
Question  10:   The value of \({\cot ^{ - 1}}(21) + {\cot ^{ - 1}}(13) + {\cot ^{ - 1}}( - 8)\) is:
(1) 0
(2) \(\pi \)
(3) \(\infty \)
(4) \(\frac{\pi }{2}\)
Choice (2)

The given expression can be written as
\({\tan ^{ - 1}}\left( {\frac{1}{{21}}} \right) + {\tan ^{ - 1}}\left( {\frac{1}{{13}}} \right) +\pi- {\tan ^{ - 1}}\left( { - \frac{1}{8}} \right)\)
= \({\tan ^{ - 1}}\left( {\frac{{\frac{1}{{21}} + \frac{1}{{13}}}}{{1 - \frac{1}{{21}} \times \frac{1}{{13}}}}} \right) +\pi- {\tan ^{ - 1}}\left( { - \frac{1}{8}} \right)\)
= \({\tan ^{ - 1}}\left( {\frac{{34}}{{272}}} \right) + \pi-{\tan ^{ - 1}}\left( { - \frac{1}{8}} \right)\)
=\({\tan ^{ - 1}}\left( {\frac{1}{8}} \right) + \pi-{\tan ^{ - 1}}\left( { - \frac{1}{8}} \right)= \pi \)

 Click on Answer or Solution
Question  11:   The equation \((\cos p - 1){x^2} + (\cos p)x + \sin p = 0\) where \(x\) is a variable has real roots. Then the interval of \(p\) is:
(1) \((0,2\pi )\)
(2) \(( - \pi ,0)\)
(3) \(\left( {\frac{{ - \pi }}{2},\frac{\pi }{2}} \right)\)
(4) \((0,\pi )\)
Choice (3)

The discriminant,
\(D = {(\cos p)^2} - 4(\cos p - 1)(\sin p)\)
Since \((\cos p - 1) \le 0\), hence to make D a non-negative number, \(\sin p \le 0\)
Hence \(p \in \left( {\frac{{ - \pi }}{2},\frac{\pi }{2}} \right)\)

 Click on Answer or Solution
NIMCET 2013
Question  12:   The solution of \(\sin x + 1 = \cos x\) such that \(0 \le x \le 2\pi \) is
(1) \(0,\pi \)
(2) \(0,\,\,\frac{\pi }{2}\)
(3) \(\frac{\pi }{2},\;\frac{{3\pi }}{2}\)
(4) \(0,\,\,\frac{{3\pi }}{2}\)
Choice (4)

Given that,
\(\sin x + 1 = \cos x\)
¬\( \Rightarrow \cos x - \sin x = 1\)
\( \Rightarrow \frac{1}{{\sqrt 2 }}\cos x - \frac{1}{{\sqrt 2 }}\sin x = \frac{1}{{\sqrt 2 }}\)
\( \Rightarrow \cos \frac{\pi }{4}\cos x - \sin \frac{\pi }{4}\sin x = \cos \frac{\pi }{4}\)
\( \Rightarrow \cos \left( {\frac{\pi }{4} + x} \right) = \cos \frac{\pi }{4}\)
\( \Rightarrow \frac{\pi }{4} + x = 2n\pi \)
\(\frac{\pi }{4} + x = 2n\pi \pm \frac{\pi }{4}\)
Taking positive and negative signs, we have \(x = 2n\pi ,\;\,2n\pi - \frac{\pi }{2}\)
Now putting \(n = 0,\,1\), we get two values of \(x = 0,\,\;\frac{{3\pi }}{2}\)

 Click on Answer or Solution
NIMCET 2015
Question  13:   If \(0 < x < \pi \) and\(\cos x + \sin x = \frac{1}{2}\), then the value of \(\tan x\) is
(1) \(\frac{{4 - \sqrt 7 }}{3}\)
(2) \(\frac{{ - 4 + \sqrt 7 }}{3}\)
(3) \(\frac{{1 + \sqrt 7 }}{4}\)
(4) \(\frac{{1 - \sqrt 7 }}{4}\)
Choice (2)

Squaring the equation, we have
\({\sin ^2}x + {\cos ^2}x + 2\sin x\cos x = \frac{1}{4}\)
\( \Rightarrow 1 + \sin 2x = \frac{1}{4}\)
\( \Rightarrow 1 + \frac{{2\tan x}}{{1 - {{\tan }^2}x}} = \frac{1}{4}\)
\( \Rightarrow 3{\tan ^2}x + 8\tan x + 3 = 0\)
Hence \(\tan x = \frac{{ - 4 \pm \sqrt 7 }}{3}\)

 Click on Answer or Solution
Question  14:   The value of \({\sin ^{ - 1}}\frac{1}{{\sqrt 2 }} + {\sin ^{ - 1}}\frac{{\sqrt 2 - \sqrt 1 }}{{\sqrt 6 }}\)+ \({\sin ^{ - 1}}\frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt {12} }}\) + .... to infinity is equal to
(1) \(\pi \)
(2) \(\frac{\pi }{3}\)
(3) \(\frac{\pi }{2}\)
(4) \(\frac{\pi }{4}\)
Choice (3)

\({\sin ^{ - 1}}\frac{1}{{\sqrt 2 }} = {\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 2 }}} \right) = \frac{\pi }{4}\)
General term of the series is, \({\sin ^{ - 1}}\left( {\frac{{\sqrt n - \sqrt {n - 1} }}{{\sqrt n \sqrt {n + 1} }}} \right)\) and this term is actually equal to \({\sin ^{ - 1}}\left( {\frac{1}{{\sqrt n }}} \right) - {\sin ^{ - 1}}\left( {\frac{1}{{\sqrt {n + 1} }}} \right)\).
Hence the series can be written as
\({\sin ^{ - 1}}\frac{1}{{\sqrt 2 }} + \left( {{{\sin }^{ - 1}}\frac{1}{{\sqrt 2 }} - {{\sin }^{ - 1}}\frac{1}{{\sqrt 3 }}} \right) + \left( {{{\sin }^{ - 1}}\frac{1}{{\sqrt 3 }} - {{\sin }^{ - 1}}\frac{1}{{\sqrt 4 }}} \right) + ....\)
=\({\sin ^{ - 1}}\frac{1}{{\sqrt 2 }} + {\sin ^{ - 1}}\frac{1}{{\sqrt 2 }} = \frac{\pi }{2}\)

 Click on Answer or Solution
NIMCET 2016
Question  15:   The number of points in \(( - \infty ,\infty )\), for which \({x^2} - x\sin x - \cos x = 0\) is:
(1) 6
(2) 4
(3) 2
(4) 0
Choice (3)

Given that \(y(x)\, = \,{x^2} - x\,\,\sin x - \cos x = 0\)
Differentiate the equation,
\(y'(x) = 2x - \sin x - x\cos x + \sin x\)
\( \Rightarrow \,y'(x)\, = \,x(2 - \cos x)\)
when \(x\) is positive \(y\) increases and when \(x\) is negative it decreases, thus at \(x = 0,\,\,y\) is minimum.
At \(x = 0,\,\,y = - 1\).

Therefore, the graph will intersect twice.

 Click on Answer or Solution
NIMCET 2017
Question  16:   If \({\sin ^{ - 1}}\frac{{2a}}{{1 + {a^2}}} + {\sin ^{ - 1}}\frac{{2b}}{{1 + {b^2}}} = 2{\tan ^{ - 1}}n\) then
(1) \(n = \frac{{a - b}}{{1 + ab}}\)
(2) \(n = \frac{{ab}}{{a - b}}\)
(3) \(n = \frac{{a + b}}{{1 - ab}}\)
(4) \(n = \frac{{1 - ab}}{{1 + ab}}\)
Choice (3)

Given that sin–1 \(\frac{{2a}}{{1 + {a^2}}} + {\sin ^{ - 1}}\frac{{2b}}{{1 + {b^2}}} = 2{\tan ^{ - 1}}n\)
it can be written as
\(2{\tan ^{ - 1}}a + 2{\tan ^{ - 1}}b = 2{\tan ^{ - 1}}n\)
\( \Rightarrow {\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}n\)
\( \Rightarrow {\tan ^{ - 1}}\left( {\frac{{a + b}}{{1 - ab}}} \right) = {\tan ^{ - 1}}(n)\)
Hence \(n = \frac{{a + b}}{{1 - ab}}\)

 Click on Answer or Solution
Question  17:   The value of A that satisfies the equation a sin A + b cos A = c is equal to:
(1) \({\tan ^{ - 1}}\left( {\frac{a}{b}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)\)
(2) \({\tan ^{ - 1}}\left( {\frac{c}{b}} \right) \pm {\sin ^{ - 1}}\left( {\frac{a}{{\sqrt {{a^2} + {b^2}} }}} \right)\)
(3) \({\tan ^{ - 1}}\left( {\frac{a}{b}} \right) \pm {\sin ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)\)
(4) None of these
Choice (1)

Given that \(a\sin A + b\cos A = c\)
Divide the equation by \(\sqrt {{a^2} + {b^2}} \)
\(\frac{a}{{\sqrt {{a^2} + {b^2}} }}\sin A\, + \,\frac{b}{{\sqrt {{a^2} + {b^2}} }}\cos A\, = \,\frac{c}{{\sqrt {{a^2} + {b^2}} }}\),
let \(\frac{a}{{\sqrt {{a^2} + {b^2}} }}\, = \,\sin \alpha \) then \(\frac{b}{{\sqrt {{a^2} + {b^2}} }}\, = \,\cos \alpha \)
\(\cos \left( {A - \alpha } \right)\, = \,\frac{c}{{\sqrt {{a^2} + {b^2}} }}\)\( \Rightarrow \,A\, = \,{\tan ^{ - 1}}\left( {\frac{a}{b}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)\)

 Click on Answer or Solution
Question  18:   Find the principal value of \({\cot ^{ - 1}}\left( { - \sqrt 3 } \right)\)
(1) \(\frac{\pi }{2}\)
(2) \(\frac{\pi }{6}\)
(3) \(\frac{{7\pi }}{6}\)
(4) \(\frac{{5\pi }}{6}\)
Choice (4)

We know that \({\cot ^{ - 1}}( - x) = \pi - {\cot ^{ - 1}}x\)
Therefore cot–1\({\cot ^{ - 1}}( - \sqrt 3 ) = \pi - {\cot ^{ - 1}}(\sqrt 3 )\)
\( = \pi - \frac{\pi }{6}\, = \,\frac{{5\pi }}{6}\)

 Click on Answer or Solution
NIMCET 2018
Question  19:   The number of the solutions of the equation \(\sin x + \sin 5x = \sin 3x\) lying in the interval \(\left[ {0,\pi } \right]\) is:
(1) 4
(2) 6
(3) 5
(4) 2
Choice (2)

The given equation is,
\(2\sin 3x\cos 2x = \sin 3x\)
\( \Rightarrow \sin 3x(2\cos 2x - 1) = 0\)
Hence either \(\sin 3x = 0\) or \(\cos 2x = \frac{1}{2}\)
General solutions are \(3x = n\pi ,\;\,2x = 2n\pi \pm \frac{\pi }{3}\)
Putting values of \(n,\)we get the following values of \(x\)
\(0,\,\,\frac{\pi }{3},\,\,\frac{{2\pi }}{3},\,\,\pi ,\,\,\frac{\pi }{6},\,\,\frac{{5\pi }}{6}\), there are 6 solutions.

 Click on Answer or Solution
Question  20:   The value of \(\cot \left( {{\rm{cose}}{{\rm{c}}^{ - 1}}\frac{5}{3} + {{\tan }^{ - 1}}\frac{2}{3}} \right)\) is:
(1) 42887
(2) 42795
(3) 42826
(4) 42856
Choice (1)

\({\rm{cose}}{{\rm{c}}^{ - 1}}\frac{5}{3} = {\tan ^{ - 1}}\frac{3}{4}\)
\( \Rightarrow {\rm{cose}}{{\rm{c}}^{ - 1}}\frac{5}{3} + {\tan ^{ - 1}}\frac{2}{3} = {\rm{ta}}{{\rm{n}}^{ - 1}}\frac{3}{4} + {\tan ^{ - 1}}\frac{2}{3}\)
\( = {\tan ^{ - 1}}\left( {\frac{{\frac{3}{4} + \frac{2}{3}}}{{1 - \frac{3}{4} \times \frac{2}{3}}}} \right) = {\tan ^{ - 1}}\left( {\frac{{17}}{6}} \right) = {\cot ^{ - 1}}\left( {\frac{6}{{17}}} \right)\)
Hence \(\cot \left( {{\rm{cose}}{{\rm{c}}^{ - 1}}\frac{5}{3} + {{\tan }^{ - 1}}\frac{2}{3}} \right) = \cot \left( {{{\cot }^{ - 1}}\frac{6}{{17}}} \right) = \frac{6}{{17}}\)

 Click on Answer or Solution
NIMCET 2019
Question  21:   If \({\sin ^2}x\tan x + {\cos ^2}x\cot x - \sin 2x = 1 + \tan x + \cot x,\) \(x \in (0,\pi )\), then \(x\) is:
(1) \(\frac{{3\pi }}{{12}},\frac{{5\pi }}{{12}}\)
(2) \(\frac{{5\pi }}{{12}},\frac{{7\pi }}{{12}}\)
(3) \(\frac{{7\pi }}{{12}},\frac{{11\pi }}{{12}}\)
(4) \(\frac{{7\pi }}{{12}},\frac{{9\pi }}{{12}}\)
Choice (3)

Multiplying by \(\sin x\cos x\),
\({\sin ^4}x + {\cos ^4}x - \sin 2x(\sin x\cos x)\)
\(\;\;\;\;\;\;\;\;\;\; = \sin x\cos x + {\sin ^2}x + {\cos ^2}x\)
\( \Rightarrow {({\sin ^2}x + {\cos ^2}x)^2} - 2{\sin ^2}x{\cos ^2}x - \sin 2x(\sin x\cos x)\)
\(\;\;\;\;\;\;\;\;\;\; = \sin x\cos x + {\sin ^2}x + {\cos ^2}x\)
\( \Rightarrow 1 - \frac{{{{\sin }^2}2x}}{2} - \frac{{{{\sin }^2}2x}}{2} = \frac{{\sin 2x}}{2} + 1\)
\( \Rightarrow \sin 2x = 0\) or \(\sin 2x = - \frac{1}{2}\)
The solution of \(\sin 2x = 0\)is \(x = \frac{{n\pi }}{2}\)but this does not satisfy the give equation as either \(\tan x\) or \(\cot x\) or \(\tan x\) becomes undefined.
Hence \(\sin 2x = - \frac{1}{2}\) and \(2x = \pi + \frac{\pi }{6},\;2\pi - \frac{\pi }{6}\)
Thus \(x = \frac{{7\pi }}{{12}},\;\frac{{11\pi }}{{12}}\)

 Click on Answer or Solution
Question  22:   Number of real solution of the equation \(\sin ({e^x}) = {5^x} + {5^{ - x}}\) is:
(1) 1
(2) 2
(3) 3
(4) 0
Choice (4)

We know that \(a + \frac{1}{a} \ge 2\), when \(a > 0\), hence \({5^x} + {5^{ - x}} \ge 2\).
But \( - 1 \le \sin \theta \le 1\) or \(\sin ({e^x}) \le 1\), so \(\sin ({e^x})\) will never be equal to \({5^x} + {5^{ - x}}\)and there will be no solution.

 Click on Answer or Solution
NIMCET 2020
Question  23:   Solve the equation \({\sin ^2}x - \sin x - 2 = 0\) for \(x\) on the interval \(0 \le x \le 2\pi \)
(1) \(x = - \frac{\pi }{2}\) only
(2) \(x = \frac{\pi }{4}\;\;{\rm{and}}\;\frac{{2\pi }}{7}\)
(3) \(x = \frac{{2\pi }}{3}\;\;{\rm{and}}\;\frac{{2\pi }}{5}\)
(4) None of these
Choice (4)

The given equation is:
\((\sin x - 2)(\sin x + 1) = 0\)
\( \Rightarrow \sin x = - 1\)
Hence \(\color{blue}{x = \frac{{3\pi }}{2}}\). None of the answer is correct.

 Click on Answer or Solution
Question  24:   The value of \(2{\tan ^{ - 1}}\left( {{\rm{cosec}}({{\tan }^{ - 1}}x) - \tan ({{\cot }^{ - 1}}x)} \right)\) is:
(1) \(\tan x\)
(2) \(\cot x\)
(3) \({\tan ^{ - 1}}x\)
(4) \({\rm{cose}}{{\rm{c}}^{ - 1}}x\)
Choice (3)

\(2{\tan ^{ - 1}}\left( {{\rm{cosec}}({{\tan }^{ - 1}}x) - \tan ({{\cot }^{ - 1}}x)} \right)\)
\({\rm{cosec}}\,({\tan ^{ - 1}}x) = {\rm{cosec}}\left( {{\rm{cose}}{{\rm{c}}^{ - 1}}\frac{{\sqrt {1 + {x^2}} }}{x}} \right) = \frac{{\sqrt {1 + {x^2}} }}{x}\)
\(\tan ({\cot ^{ - 1}}x) = \frac{1}{x}\)
\(\begin{array}{l} \Rightarrow 2{\tan ^{ - 1}}\left( {{\rm{cosec}}({{\tan }^{ - 1}}x) - \tan ({{\cot }^{ - 1}}x)} \right)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = 2{\tan ^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}} }}{x} - \frac{1}{x}} \right)\end{array}\)
\( = 2{\tan ^{ - 1}}\left( {\frac{{\sec \theta - 1}}{{\tan \theta }}} \right) = 2{\tan ^{ - 1}}\left( {\frac{{1 - \cos \theta }}{{\sin \theta }}} \right)\)
\( = 2{\tan ^{ - 1}}\left( {\frac{{2{{\sin }^2}\frac{\theta }{2}}}{{2\sin \frac{\theta }{2}\cos \frac{\theta }{2}}}} \right) = 2{\tan ^{ - 1}}\left( {\tan \frac{\theta }{2}} \right) = \theta \)
\( = {\tan ^{ - 1}}x\)

 Click on Answer or Solution
NIMCET 2021
Question  25:   If |k| = 5, 0° ≤ α ≤ 360°, then total number of different solutions of 3 cos α + 4 sin α = k is:
(1) 0
(2) 1
(3) 2
(4) infinite
Choice (3)

The maximum and minimum value of \(a\cos \alpha + b\sin \alpha = \pm \sqrt {{a^2} + {b^2}} \)
Hence maximum and minimum value of \(3\cos \alpha + 4\sin \alpha = \pm 5\)
Given that \(\left| k \right| = 5 \Rightarrow k = \pm 5\)
Taking \(k = 5\), \(3\cos \alpha + 4\sin \alpha = 5\)
or \(\frac{3}{5}\cos \alpha + \frac{4}{5}\sin \alpha = 1\), this is possible only when \(\cos \alpha = \frac{3}{5}\) and \(\sin \alpha = \frac{4}{5}\)
Similarly when \(3\cos \alpha + 4\sin \alpha = 5\) or \(\frac{3}{5}\cos \alpha + \frac{4}{5}\sin \alpha = - 1\), this is possible only when \(\cos \alpha = - \frac{3}{5}\) and \(\sin \alpha = - \frac{4}{5}\).
Hence there are two possible values of \(\alpha \), so there are two solutions.

 Click on Answer or Solution
Question  26:   The general value of \(\theta\), satisfying the equations, \(\tan \theta = \frac{1}{{\sqrt 3 }}\) and \(\sin \theta = \frac{{ - 1}}{2}\) is:
(1) \(\theta = n\pi + \frac{\pi }{6},n \in I\)
(2) \(n\pi + {( - 1)^n}\left( {\frac{{7\pi }}{6}} \right),n \in I\)
(3) \(\theta = 2n\pi + \frac{{7\pi }}{6},n \in I\)
(4) \(\theta = 2n\pi \pm \frac{{11\pi }}{6},n \in I\)
Choice (3)

The first value of \(\theta \) satisfying the equations \(\tan \theta = \frac{1}{{\sqrt 3 }},\;\sin \theta = - \frac{1}{2}\) lies in third quadrant and the value is \(\pi + \frac{\pi }{6} = \frac{{7\pi }}{6}\). The general value of \(\theta \) can be obtained by adding a multiple of \(2\pi \).
General value = \(2n\pi + \frac{{7\pi }}{6}\)

 Click on Answer or Solution
Question  27:   If \(32{\tan ^2}\theta = 2{\cos ^2}\alpha - 3\cos \alpha \) and \(3\cos 2\theta = 1\), then the general value of \(\alpha \) for \(n \in Z\) is:
(1) \(n\pi \pm \frac{\pi }{3}\)
(2) \(2n\pi \pm \frac{{2\pi }}{3}\)
(3) \(2n\pi \pm \frac{\pi }{3}\)
(4) \(n\pi \pm \frac{{2\pi }}{3}\)
Choice (2)

We know that \(\cos 2\theta = \frac{{1 - {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}\)
Given that \(\cos 2\theta = \frac{{1 - {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }} = \frac{1}{3} \Rightarrow {\tan ^2}\theta = \frac{1}{2}\)
Putting this value in the equation, we have,
\(32{\left( {\frac{1}{2}} \right)^4} = 2{\cos ^2}\alpha - 3\cos \alpha \)
\( \Rightarrow (2\cos \alpha + 1)(\cos \alpha - 2) = 0\)
Or \(\cos \alpha = - \frac{1}{2} \Rightarrow \alpha = 2n\pi \pm \frac{{2\pi }}{3}\)

 Click on Answer or Solution
NIMCET 2022
Question  28:   The solutions for \({\tan ^{ - 1}}\sqrt {x(x + 1)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}\) are:
(1) (0, 1)
(2) (1, –1)
(3) (0, –1)
(4) (0, –2)
Choice (3)

\({\tan ^{ - 1}}\sqrt {x(x + 1)} = \frac{\pi }{2} - {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} \)
\( \Rightarrow {\tan ^{ - 1}}\sqrt {x(x + 1)} = {\cos ^{ - 1}}(\sqrt {{x^2} + x + 1} )\)
Put \(x(x + 1) = y\), then
\({\tan ^{ - 1}}\sqrt y = {\cos ^{ - 1}}\sqrt {y + 1} = {\sec ^{ - 1}}\left( {\frac{1}{{\sqrt {y + 1} }}} \right)\)
Using \({\sec ^2}\theta = 1 + {\tan ^2}\theta \), we have
\(\frac{1}{{y + 1}} - 1 = y \Rightarrow y = 0,\, - 2\)
And the corresponding real values of \(x = 0,\, - 1\)

 Click on Answer or Solution
Question  29:   The correct expression for \({\cos ^{ - 1}}(x)\) is:
(1) \(\frac{\pi }{2} - {\cos ^{ - 1}}x\)
(2) \(\pi - {\cos ^{ - 1}}x\)
(3) \(\pi + {\cos ^{ - 1}}x\)
(4) \(\frac{\pi }{2} + {\cos ^{ - 1}}x\)
Choice (2)

The value of \({\cos ^{ - 1}}(x)\) is \(\pi - {\cos ^{ - 1}}x\)

 Click on Answer or Solution
Question  30:   If \({\cos ^{ - 1}}\frac{x}{2} + {\cos ^{ - 1}}\frac{y}{3} = \phi \), then \(9{x^2} - 12xy\cos \phi + 4{y^2}\)is equal to:
(1) \( - 36{\sin ^2}\phi \)
(2) \(36{\sin ^2}\phi \)
(3) \(36{\cos ^2}\phi \)
(4) 36
Choice (2)

\({\cos ^{ - 1}}\frac{x}{2} + {\cos ^{ - 1}}\frac{y}{3} = {\cos ^{ - 1}}\left( {\frac{{xy}}{6} - \sqrt {1 - \frac{{{x^2}}}{4}} \sqrt {1 - \frac{{{y^2}}}{9}} } \right)\)
\( \Rightarrow {\cos ^{ - 1}}\left( {\frac{{xy}}{6} - \frac{{\sqrt {4 - {x^2}} \sqrt {9 - {y^2}} }}{6}} \right) = \phi \)
\( \Rightarrow xy - \sqrt {36 - 4{y^2} - 9{x^2} + {x^2}{y^2}} = 6\cos \phi \)
\( \Rightarrow {(xy - 6\cos \phi )^2} = 36 - 4{y^2} - 9{x^2} + {x^2}{y^2}\)
\( \Rightarrow 9{x^2} - 12xy\cos \phi + 4{y^2} = 36{\sin ^2}\phi \)

 Click on Answer or Solution
Question  31:   The solutions of the equation \(4{\cos ^2}x + 6{\sin ^2}x = 5\) are:
(1) \(x = n\pi \pm \frac{\pi }{4}\)
(2) \(x = n\pi \pm \frac{\pi }{3}\)
(3) \(x = n\pi \pm \frac{\pi }{2}\)
(4) \(x = n\pi \pm \frac{{2\pi }}{3}\)
Choice (1)

The given equation can be written as
\(4{\cos ^2}x + 4{\sin ^2}x + 2{\sin ^2}x = 5\)
\( \Rightarrow {\sin ^2}x = \frac{1}{2} = {\sin ^2}\frac{\pi }{4}\)
\( \Rightarrow x = n\pi \pm \frac{\pi }{4}\)

 Click on Answer or Solution
NIMCET 2023
Question  32:   If \({n_1}\) and \({n_2}\) are the number of real valued solution of equations \(x = \left| {{\rm{si}}{{\rm{n}}^{ - 1}}x} \right|\) and \(x = {\rm{sin}}\left( x \right)\) respectively, then the value of \({n_2} - {n_1}\) is:
(1) 0
(2) 1
(3) 2
(4) 3
Choice (1)

We know that \(\sin x = x\) has only one solution, that is \(x = 0\). Hence \({n_2} = 1\)
Also \(x = \,|{\sin ^{ - 1}}x|\) has one solution \(x = 0\). Hence \({n_1}-{n_2}=0\)

 
Intersection of \(y = x\) with \(y = \sin x\) and \(y = \,|{\sin ^{ - 1}}x|\)

 Click on Answer or Solution