Topic Wise Previous Year Questions

2. Progressions

On an average 1 - 2 questions are asked from this chapter. In many years the questions of  series are combined with other topics like logarithms or Trigonometry. Level of questions is normaly easy to moderate. The following table gives details about the number of questions asked in various years.

Topic-wise distribution:

Year/Topics AP GP HP MIXED Total
2008 0 0 1 1 2
2009 1 0 0 0 1
2010 0 0 0 1 1
2011 3 0 1 0 4
2012 0 0 0 0 0
2013 2 1 0 0 3
2014 0 0 0 0 0
2015 0 0 0 1 1
2016 2 0 0 0 2
2017 0 0 0 1 1
2018 1 1 0 0 2
2019 0 1 0 1 2
2020 1 0 0 0 1
2021 0 1 1 0 2
2022 1 0 2 0 3

NIMCET 2008
Question  01:   Suppose \(a, b, c\) are in A.P. with common difference d. Then \({e^{\frac{1}{c}}},\,{e^{\frac{b}{{ac}}}},\,{e^{\frac{1}{a}}}\) are
(1) A.P.
(2) G.P.
(3) H.P.
(4) None of these
Choice (2)

Since \(a,b,c\) are in AP, hence \(2b = a + c\).
Now \(\left( {{e^{\frac{1}{c}}}} \right)\left( {{e^{\frac{1}{a}}}} \right) = {e^{\frac{{a + c}}{{ac}}}} = {e^{\frac{{2b}}{{ac}}}} = {\left( {{e^{\frac{b}{{ac}}}}} \right)^2}\)
So the numbers \({e^{\frac{1}{c}}},\,{e^{\frac{b}{{ac}}}},\,{e^{\frac{1}{a}}}\) are in GP.

 Click on Answer or Solution
Question  02:   (Repeated in 2021 also) If \(H_1, H_2, ….H_n\) are \(n\) harmonic means between a and b, a ≠ b, then the value of \(\frac{{{H_1} + a}}{{{H_1} - a}} + \frac{{{H_n} + b}}{{{H_n} - b}}\) is equal to:
(1) n + 1
(2) n – 1
(3) 2n
(4) 2n + 3
Choice (3)

The numbers \(\frac{1}{a},\,\frac{1}{{{H_1}}},........\frac{1}{{{H_n}}},\,\frac{1}{b}\) are in AP, hence
\(\frac{1}{{{H_1}}} - \frac{1}{a} = \frac{1}{b} - \frac{1}{{{H_n}}} = d\) and \(\frac{1}{b} = \frac{1}{a} + (n + 1)d\)
Now \(\frac{{{H_1} + a}}{{{H_1} - a}} + \frac{{{H_n} + b}}{{{H_n} - b}} = \frac{{\frac{1}{a} + \frac{1}{{{H_1}}}}}{{\frac{1}{a} - \frac{1}{{{H_1}}}}} + \frac{{\frac{1}{b} + \frac{1}{{{H_n}}}}}{{\frac{1}{b} - \frac{1}{{{H_n}}}}}\)
\( = \frac{{\frac{1}{a} + \frac{1}{a} + d}}{{ - d}} + \frac{{\frac{1}{b} + \frac{1}{b} - d}}{d}\)
\( = - \frac{2}{{ad}} - 1 + \frac{2}{{bd}} - 1 = \frac{2}{d}\left( {\frac{1}{b} - \frac{1}{a}} \right) - 2\)
\( = \frac{2}{d}\left[ {(n + 1)d} \right] - 2 = 2n\)

 Click on Answer or Solution
NIMCET 2009
Question  03:   If \(A_1\) = {3}, \(A_2\) = {5, 7, 9}, \(A_3\) = {11, 13, 15, 17, 19}, \(A_4\) = {21, 23, 25, 27, 29, 31, 33} and so on, what is the average of the numbers of the set \(A_{20}\)?
(1) 761
(2) 763
(3) 765
(4) 767
Choice (2)

Number of elements in \({A_1},\,{A_2},\,{A_3}\) are 1, 3, 5,…..
Hence total number of elements upto \({A_{19}}\) = 1 + 3 + 5 + 7 + …. + 19 terms = 19² = 361
(as sum of the first \(n\) odd numbers is \(n^2\))
So \({A_{20}}\)will contain 39 terms and will start with 362nd term of {3, 5, 7, 9, 11, ……}, that is 2×362 + 1 = 725.
Thus average of the series {725, 727, 729, ……..39 terms} will be 19th term of the series = 725 + 18×2 = 763

 Click on Answer or Solution
NIMCET 2010
Question  04:   If \(a, b, c\) are in A.P., \(p, q, r\) are in H.P. and \(ap, bq, cr\) in G.P., then \(\frac{p}{r} + \frac{r}{p}\) is equal to:
(1) \(\frac{a}{c} - \frac{c}{a}\)
(2) \(\frac{a}{c} + \frac{c}{a}\)
(3) \(\frac{b}{q} - \frac{a}{p}\)
(4) \(\frac{b}{q} + \frac{a}{p}\)
Choice (2)

From the given information, we have
\(2b = a + c,\,q = \frac{{2pr}}{{p + r}},\;{b^2}{q^2} = acpr\)
Now \(\frac{p}{r} + \frac{r}{p} = \frac{{{{(p + r)}^2} - 2pr}}{{pr}} = \frac{{{{(p + r)}^2}}}{{pr}} - 2\)
Putting the value of \(p + r = \frac{{2pr}}{q}\), we have
\(\frac{p}{r} + \frac{r}{p} = \frac{{{{(p + r)}^2}}}{{pr}} - 2 = \frac{{4pr}}{{{q^2}}} - 2\)
Put the value of \({q^2} = \frac{{acpr}}{{{b^2}}}\)
\(\frac{p}{r} + \frac{r}{p} = \frac{{4pr}}{{{q^2}}} - 2 = \frac{{4pr}}{{\frac{{acpr}}{{{b^2}}}}} - 2 = \frac{{4{b^2}}}{{ac}} - 2\)
\( = \frac{{{{(a + c)}^2}}}{{ac}} - 2 = \frac{{{a^2} + {c^2} + 2ac}}{{ac}} - 2 = \frac{a}{c} + \frac{c}{a}\)

 Click on Answer or Solution
NIMCET 2011
Question  05:   If the mean of the squares of first \(n\) natural numbers be 11, then \(n\) is equal to:
(1) \( - \frac{{13}}{2}\)
(2) 11
(3) 5
(4) 4
Choice (3)

Mean of the squares of first \(n\) natural numbers = \(\frac{{n(n + 1)(2n + 1)}}{{6n}} = \frac{{(n + 1)(2n + 1)}}{6}\)
\( \Rightarrow \frac{{(n + 1)(2n + 1)}}{6} = 11\)
Or \(n = 5\)

 Click on Answer or Solution
Question  06:   The mean of first \(n\) natural numbers is equal to \(\frac{{n + 7}}{3},\) then \(n\) is equal to:
(1) 9
(2) 10
(3) 11
(4) 12
Choice (3)

Mean of the first \(n\)natural numbers \( = \frac{{n(n + 1)}}{{2n}} = \frac{{n + 1}}{2}\)
Given that \(\frac{{n + 1}}{2} = \frac{{n + 7}}{3} \Rightarrow 3n + 3 = 2n + 14\)
Or \(n = 11\)

 Click on Answer or Solution
Question  07:   If three positive real number a, b, c (c > a) are in H.P., then log (a + c) + log (a – 2b + c) is
(1) 2 log (c – b)
(2) 2 log (a + c)
(3) 2 log (c – a)
(4) log a + log b + log c
Choice (3)

Given that \(a,b,c\) are in HP, hence \(2b = \frac{{ac}}{{a + c}}\)
\( \Rightarrow \log (a - 2b + c) = \log \left( {a + c - \frac{{4ac}}{{a + c}}} \right)\)
\( = \log \left( {\frac{{{{(a + c)}^2} - 4ac}}{{a + c}}} \right) = \log \left( {\frac{{{{(c - a)}^2}}}{{a + c}}} \right) = 2\log (c - a) - \log (a + c)\)
\(\log (a + c) + \log (a - 2b + c) = 2\log (c - a)\)

 Click on Answer or Solution
Question  08:   The sum of 11² + 12² + 13² + …. + 30²
(1) 8070
(2) 9070
(3) 1080
(4) 9700
Choice (2)

The required sum = \(\sum\limits_{n = 1}^{30} {{n^2}} - \sum\limits_{n = 1}^{10} {{n^2}} = \frac{{30 \times 31 \times 61}}{6} - \frac{{10 \times 11 \times 21}}{6}\)
\( = \frac{{30}}{6}\left( {31 \times 61 - 11 \times 7} \right) = 9070\)
The value of \({9^{\frac{1}{3}}}\,\,{9^{\frac{1}{9}}}\,\,\,{9^{\frac{1}{{27}}}}...........\infty \) is:

 Click on Answer or Solution
NIMCET 2013
Question  09:   The value of \({9^{\frac{1}{3}}}\,\,{9^{\frac{1}{9}}}\,\,\,{9^{\frac{1}{{27}}}}...........\infty \) is:
(1) 3
(2) 6
(3) 9
(4) None of these
Choice (1)

The value is \({9^{\frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + .....\infty }} = {9^{\frac{{\frac{1}{3}}}{{\,\,1 - \frac{1}{3}\,\,}}}} = {9^{\frac{1}{2}}} = \sqrt 9 = 3\)

 Click on Answer or Solution
Question  10:   The sum of integers between 200 and 400, that are multiples of 7 is:
(1) 8729
(2) 8700
(3) 8972
(4) 8279
Choice (1)

The first number that is a multiple of 7 and more than 200 is 203. The last number is 399.
So the series is 203, 210, 217, ……. , 399
To find the number of terms in the series,
\(203 + (n - 1) \times 7 = 399\) or \(n = 29.\)
Sum of the series = \(\frac{{203 + 399}}{2} \times 29 = 8729\)

 Click on Answer or Solution
Question  11:   Sum of 20 terms of the series –1² + 2² –3² + 4² – … is:
(1) 180
(2) 200
(3) 210
(4) 220
Choice (3)

The series is \( - {1^2} + {2^2} - {3^2} + {4^2} - ...... + {20^2}\)
Taking terms in pairs, we have
\(\underbrace { - {1^2} + {2^2}}_{}\underbrace { - {3^2} + {4^2}}_{} - ......\underbrace { - {{19}^2} + {{20}^2}}_{}\)
\({2^2} - {1^2} = 3,\,\,{4^2} - {3^2} = 7,\,\,{6^2} - {5^2} = 11,....\)
The required sum is \(3 + 7 + 11 + ..... + 39 = \left( {\frac{{3 + 39}}{2}} \right) \times 10 = 210\)

 Click on Answer or Solution
NIMCET 2015
Question  12:   If \(a, b, c\) are in geometric progression, then \({\log _{ax}}x,{\log _{bx}}x\) and \({\log _{cx}}x\) are in:
(1) Arithmetic progression
(2) Geometric progression
(3) Harmonic progression
(4) Arithmetico-geometric progression
Choice (3)

Given that \(a,\,b,\,c\) are in GP, hence \({b^2} = ac\)
Multiplying by \({x^2}\) both sides,
\({x^2}{b^2} = (ax)(cx)\)
Taking log, both sides,
\({\log _x}({x^2}{b^2}) = {\log _x}(ax) + {\log _x}(cx)\)
\( \Rightarrow 2{\log _x}(bx) = {\log _x}(ax) + {\log _x}(cx)\)
\( \Rightarrow {\log _x}(bx) - {\log _x}(ax) = {\log _x}(cx) - {\log _x}(bx)\)
Hence \({\log _x}(ax),\,{\log _x}(bx),\,{\log _x}(cx)\,\) are in AP.
Or \({\log _{ax}}x,{\log _{bx}}x\) and \({\log _{cx}}x\) are in HP.

 Click on Answer or Solution
NIMCET 2016
Question  13:   he sum of the expression \(\frac{1}{{\sqrt 1 + \sqrt 2 }} + \frac{1}{{\sqrt 2 + \sqrt 3 }} + \frac{1}{{\sqrt 3 + \sqrt 4 }} + ..... + \frac{1}{{\sqrt {80} + \sqrt {81} }}\) is:
(1) 7
(2) 8
(3) 9
(4) 10
Choice (2)

Rationalize the denominators, we get the following series,
\(\frac{{\sqrt 2 - 1}}{1} + \frac{{\sqrt 3 - \sqrt 2 }}{1} + \frac{{\sqrt 4 - \sqrt 3 }}{1} + ...\frac{{\sqrt {81} - \sqrt {80} }}{1}\)
\( = \sqrt {81} - 1 = 8\)

 Click on Answer or Solution
Question  14:   If \({a_1},{a_2},.....,{a_n}\) are in A. P. and \({a_1} = 0,\) then the value of \(\left( {\frac{{{a_3}}}{{{a_2}}} + \frac{{{a_4}}}{{{a_3}}} + .... + \frac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\frac{1}{{{a_2}}} + \frac{1}{{{a_3}}} + ..... + \frac{1}{{{a_{n - 2}}}}} \right)\) is equal to
(1) \((n - 2) + \frac{1}{{(n - 2)}}\)
(2) \(\frac{1}{{n - 2}}\)
(3) \(n - 2\)
(4) \(n - \frac{1}{{n - 2}}\)
Choice (1)

Given that \({a_1} = 0\), hence \({a_2} = d,\,{a_3} = 2d,\,{a_4} = 3d,...\;{\rm{etc}}\).
The value of \(\left( {\frac{{{a_3}}}{{{a_2}}} + \frac{{{a_4}}}{{{a_3}}} + .... + \frac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\frac{1}{{{a_2}}} + \frac{1}{{{a_3}}} + ..... + \frac{1}{{{a_{n - 2}}}}} \right)\)
\(\left( {\frac{{2d}}{d} + \frac{{3d}}{{2d}} + ..... + \frac{{(n - 1)d}}{{(n - 2)d}}} \right) - d\left( {\frac{1}{d} + \frac{1}{{2d}} + .. + \frac{1}{{n - 3}}} \right)\)
\( = \left( {\frac{2}{1} + \frac{3}{2} + .... + \frac{{n - 1}}{{n - 2}}} \right) - \left( {\frac{1}{1} + \frac{1}{2} + .... + \frac{1}{{n - 3}}} \right)\)
\( = \left( {\frac{2}{1} - \frac{1}{1}} \right) + \left( {\frac{3}{2} - \frac{1}{2}} \right) + ....\left( {\frac{{n - 2}}{{n - 3}} - \frac{1}{{n - 3}}} \right) + \frac{{n - 1}}{{n - 2}}\)
\( = n - 3 + \frac{{n - 1}}{{n - 2}} = n - 3 + \frac{{n - 2}}{{n - 2}} + \frac{1}{{n - 2}} = n - 2 + \frac{1}{{n - 2}}\)

 Click on Answer or Solution
NIMCET 2017
Question  15:   Three positive number whose sum is 21 are in arithmetic progression. If 2, 2, 14 are added to them respectively then resulting numbers are in geometric progression. Then which of the following is not among the three numbers?
(1) 25
(2) 13
(3) 1
(4) 7
Choice (1)

Let the three terms in A.P. be a – d, a, a + d.
given that a – d + a + a + d = 21 a = 7
then the three term in A.P. are 7 – d, 7, 7 + d
According to given condition 9 – d, 9, 21 + d are in G.P.
(9)² = (9 – d) (21 + d)
81 = 189 + 9d – 21d – d²
81 = 189 – 12d – d²
d² + 12d – 108 = 0
(d – 6) (d + 18) = 0
We get, d = 6, –18
Putting d = 6 in the term 7 – d, 7, 7 + d we get 1, 7, 13.

 Click on Answer or Solution
NIMCET 2018
Question  16:   In an HP, \({{\rm{m}}^{{\rm{th}}}}\)term is \(n\) and \({{\rm{n}}^{{\rm{th}}}}\)term is \(m\), where \(m \ne n\), then the value of \({(m + n)^{{\rm{th}}}}\) term is:
(1) \(\frac{{m + n}}{{mn}}\)
(2) \(\frac{{m + n}}{n}\)
(3) \(\frac{{m + n}}{m}\)
(4) \(\frac{{mn}}{{m + n}}\)
Choice (4)

Let us take the reciprocal of the numbers and the numbers will be in AP. Hence
\(a + (n - 1)d = \frac{1}{m}\), \(a + (m - 1)d = \frac{1}{n}\) and \(a + (m + n - 1)d = x\)
We have to find \(x\) by eliminating \(a\) and \(d\). Subtract second equation from first and third from second,
\((n - m)d = \frac{1}{m} - \frac{1}{n}\) \( \Rightarrow d = \frac{1}{{mn}}\)
\(nd = x - \frac{1}{n} \Rightarrow x = \frac{1}{m} + \frac{1}{n} = \frac{{mn}}{{m + n}}\)

 Click on Answer or Solution
Question  17:   Sum to infinity of a geometric progression is twice the sum of first two terms. Then the possible values of common ratios are:
(1) \( \pm \frac{1}{{\sqrt 2 }}\)
(2) \( \pm \frac{1}{2}\)
(3) \( \pm \frac{1}{{\sqrt 3 }}\)
(4) \( \pm \frac{1}{3}\)
Choice (1)

Let the first term and common ratio are \(a\) and \(r\), then
\(\frac{a}{{1 - r}} = 2(a + ar)\)
\( \Rightarrow 2(1 + r)(1 - r) = 1\)
\( \Rightarrow 1 - {r^2} = \frac{1}{2}\) or \(r = \pm \frac{1}{{\sqrt 2 }}\)

 Click on Answer or Solution
NIMCET 2019
Question  18:   If a,b,c are in GP and log a – log2b, log2b – log3c and log3c – loga are in AP, then a, b, c are the lengths of the sides of a triangle which is:
(1) Acute angle
(2) Obtuse angled
(3) Right angles
(4) Equilateral
Choice (2)

Given that \(a,\,b,\,c\) are in GP, hence \({b^2} = ac\)
Also (log a – log2b), (log2b – log3c) and (log3c – loga) are in AP, hence
\(2\left[ {\log 2b - \log 3c} \right] = (\log a - \log 2b) + (\log 3c - \log a)\)
\( \Rightarrow 3\log 2b = 3\log 2c\)
Hence \(2b = 3c\)or \(4{b^2} = 9{c^2}\)
\(4(ac) = 9{c^2} \Rightarrow a = \frac{{9c}}{4}\)
Hence \(a:b:c = \frac{9}{4}:\frac{3}{2}:1 = 9:6:4\)
Since the biggest side is 9 and \({9^2} > {6^2} + {4^2}\), hence the triangle is an obtuse angled triangle.

 Click on Answer or Solution
Question  19:   If x, 2x + 2, 3x + 3 are the first three terms of a geometric progression, then 4th term in the geometric progression is:
(1) –13.5
(2) 13.5
(3) –27
(4) 27
Choice (1)

The ratio of third and second term is \(\frac{{3x + 3}}{{2x + 2}} = \frac{3}{2}\)
Hence \(\frac{{2x + 2}}{x} = \frac{3}{2} \Rightarrow x = - 4\)
The series will be – 4, – 6, – 9, – 13.5

 Click on Answer or Solution
NIMCET 2020
Question  20:   An arithmetic progression has 3 as its first term, also the sum of the first 8 terms is twice the sum of the first 5 terms. Then what is the common difference?
(1) 45355
(2) 45293
(3) 45295
(4) 45385
Choice (1)

Let the common difference is \(d\), then
\(\frac{8}{2}\left( {2 \times 3 + 7d} \right) = 2 \times \frac{5}{2}\left( {6 + 4d} \right)\)
Hence \(d = \frac{3}{4}\)

 Click on Answer or Solution
NIMCET 2021
Question  21:   The four geometric means between 2 and 64 are:
(1) \(\frac{1}{4},\frac{1}{8},\frac{1}{{16}},\frac{1}{{32}}\)
(2) 4, 8, 16, 32
(3) \(4\sqrt 2 ,8,16\sqrt 2 ,32\)
(4) None of these
Choice (2)

Including the 4 geometric means, there are 6 terms in the GP, where the first term is 2 and the last term is 64.
\( \Rightarrow 2({r^5}) = 64\) or \(r = 2\)
The four geometric means are 4, 8, 16, 32.

 Click on Answer or Solution
Question  22:   If \(H_1, H_2, ….H_n\) are \(n\) harmonic means between a and b, a ≠ b, then the value of \(\frac{{{H_1} + a}}{{{H_1} - a}} + \frac{{{H_n} + b}}{{{H_n} - b}}\) is equal to:
(1) n + 1
(2) n – 1
(3) 2n
(4) 2n + 3
Choice (3)

The numbers \(\frac{1}{a},\,\frac{1}{{{H_1}}},........\frac{1}{{{H_n}}},\,\frac{1}{b}\) are in AP, hence
\(\frac{1}{{{H_1}}} - \frac{1}{a} = \frac{1}{b} - \frac{1}{{{H_n}}} = d\) and \(\frac{1}{b} = \frac{1}{a} + (n + 1)d\)
Now \(\frac{{{H_1} + a}}{{{H_1} - a}} + \frac{{{H_n} + b}}{{{H_n} - b}} = \frac{{\frac{1}{a} + \frac{1}{{{H_1}}}}}{{\frac{1}{a} - \frac{1}{{{H_1}}}}} + \frac{{\frac{1}{b} + \frac{1}{{{H_n}}}}}{{\frac{1}{b} - \frac{1}{{{H_n}}}}}\)
\( = \frac{{\frac{1}{a} + \frac{1}{a} + d}}{{ - d}} + \frac{{\frac{1}{b} + \frac{1}{b} - d}}{d}\)
\( = - \frac{2}{{ad}} - 1 + \frac{2}{{bd}} - 1 = \frac{2}{d}\left( {\frac{1}{b} - \frac{1}{a}} \right) - 2\)
\( = \frac{2}{d}\left[ {(n + 1)d} \right] - 2 = 2n\)

 Click on Answer or Solution
NIMCET 2022
Question  23:   In a harmonic Progression, \({p^{{\rm{th}}}}\) term is \(q\) and \({q^{{\rm{th}}}}\)term is \(p\), then \(p{q^{{\rm{th}}}}\) term is:
(1) 0
(2) 1
(3) \(pq\)
(4) \(pq(p + q)\)
Choice (2)

Let us take the reciprocal of the numbers and the numbers will be in AP. Hence
\(a + (p - 1)d = \frac{1}{q}\), \(a + (q - 1)d = \frac{1}{p}\) and \(a + (pq - 1)d = x\)
We have to find \(x\) by eliminating \(a\) and \(d\). Subtract second equation from first and third from second,
\((p - q)d = \frac{1}{q} - \frac{1}{p}\) \( \Rightarrow d = \frac{1}{{pq}}\)
\((q - pq)d = \frac{1}{p} - x\)
Putting the value of \(d\), we get \(x = 1\)

 Click on Answer or Solution
Question  24:   Which term of the series \(\frac{{\sqrt 5 }}{3},\,\frac{{\sqrt 5 }}{4},\frac{1}{{\sqrt 5 }},........\) is \(\frac{{\sqrt 5 }}{{13}}\)?
(1) 12
(2) 11
(3) 10
(4) 9
Choice (2)

The given series is \(\frac{{\sqrt 5 }}{3},\,\frac{{\sqrt 5 }}{4},\frac{{\sqrt 5 }}{5},........\frac{{\sqrt 5 }}{{13}}\)
So we just need to find the position of 13 in the sequence 3, 4, 5, 6……
The correct answer is 11.
\(\sin d\left( {{\rm{cosec}}\,{a_1}{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}{\rm{cosec}}\,{a_3} + ..... + {\rm{cosec}}\,{a_{n - 1}}{\rm{cosec}}\,{a_n}} \right)\) is equal to:

 Click on Answer or Solution
Question  25:   If \({a_1},\,{a_2},\,{a_3},....{a_n}\)are in Arithmetic Progression with common difference \(d\), then the sum \(\sin d\left( {{\rm{cosec}}\,{a_1}{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}{\rm{cosec}}\,{a_3} + ..... + {\rm{cosec}}\,{a_{n - 1}}{\rm{cosec}}\,{a_n}} \right)\) is equal to:
(1) \(\cot {a_1} - \cot {a_n}\)
(2) \(\sin {a_1} - \sin {a_n}\)
(3) \({\rm{cosec}}\,{a_1} - {\rm{cosec}}\,{a_n}\)
(4) \({a_1} - {a_n}\)
Choice (1)

\(d = {a_2} - {a_1} = {a_3} - {a_2} = {a_4} - {a_3} = ...\)
First term of the given series is \(\sin d({\rm{cosec}}\,{a_1}{\rm{cosec}}\,{a_2})\)
\( = \frac{{\sin ({a_2} - {a_1})}}{{\sin {a_1}\sin {a_2}}} =  \frac{{sin{a_2}\cos {a_1} - \cos {a_2}\sin {a_1}}}{{\sin {a_1}\sin {a_2}}} = \cot {a_1} - \cot {a_2}\)
Similarly,
\(\sin d({\rm{cosec}}\,{a_2}{\rm{cosec}}\,{a_3}) = \frac{{\sin ({a_3} - {a_2})}}{{\sin {a_2}sin{a_3}}} = \cot {a_2} - \cot {a_3}\)
Writing all the terms in this manner and adding them we get the sum as
\((\cot {a_2} - \cot {a_1}) + (\cot {a_3} - \cot {a_2}) + ...(\cot {a_n} - \cot {a_{n - 1}})\)
\( = \cot {a_1} - \cot {a_N}\)

 Click on Answer or Solution