Topic Wise Previous Year Questions
2. Progressions
On an average 1 - 2 questions are asked from this chapter. In many years the questions of series are combined with other topics like logarithms or Trigonometry. Level of questions is normaly easy to moderate. The following table gives details about the number of questions asked in various years.
Topic-wise distribution:
| Year/Topics | AP | GP | HP | MIXED | Total |
| 2008 | 0 | 0 | 1 | 1 | 2 |
| 2009 | 1 | 0 | 0 | 0 | 1 |
| 2010 | 0 | 0 | 0 | 1 | 1 |
| 2011 | 3 | 0 | 1 | 0 | 4 |
| 2012 | 0 | 0 | 0 | 0 | 0 |
| 2013 | 2 | 1 | 0 | 0 | 3 |
| 2014 | 0 | 0 | 0 | 0 | 0 |
| 2015 | 0 | 0 | 0 | 1 | 1 |
| 2016 | 2 | 0 | 0 | 0 | 2 |
| 2017 | 0 | 0 | 0 | 1 | 1 |
| 2018 | 1 | 1 | 0 | 0 | 2 |
| 2019 | 0 | 1 | 0 | 1 | 2 |
| 2020 | 1 | 0 | 0 | 0 | 1 |
| 2021 | 0 | 1 | 1 | 0 | 2 |
| 2022 | 1 | 0 | 2 | 0 | 3 |
Question 01: Suppose \(a, b, c\) are in A.P. with common difference d. Then \({e^{\frac{1}{c}}},\,{e^{\frac{b}{{ac}}}},\,{e^{\frac{1}{a}}}\)
are
(1) A.P.
(2) G.P.
(3) H.P.
(4) None of these
Since \(a,b,c\) are in AP, hence \(2b = a + c\).
Now \(\left( {{e^{\frac{1}{c}}}} \right)\left( {{e^{\frac{1}{a}}}} \right) = {e^{\frac{{a + c}}{{ac}}}} = {e^{\frac{{2b}}{{ac}}}} = {\left( {{e^{\frac{b}{{ac}}}}} \right)^2}\)
So the numbers
\({e^{\frac{1}{c}}},\,{e^{\frac{b}{{ac}}}},\,{e^{\frac{1}{a}}}\) are in GP.
Question 02: (Repeated in 2021 also) If \(H_1, H_2, ….H_n\) are \(n\) harmonic means between a and b,
a ≠ b, then the value of \(\frac{{{H_1} + a}}{{{H_1} - a}} + \frac{{{H_n} + b}}{{{H_n} - b}}\) is equal to:
(1) n + 1
(2) n – 1
(3) 2n
(4) 2n + 3
The numbers \(\frac{1}{a},\,\frac{1}{{{H_1}}},........\frac{1}{{{H_n}}},\,\frac{1}{b}\) are in AP, hence
\(\frac{1}{{{H_1}}} - \frac{1}{a} = \frac{1}{b} - \frac{1}{{{H_n}}} = d\) and \(\frac{1}{b} = \frac{1}{a} + (n + 1)d\)
Now \(\frac{{{H_1}
+ a}}{{{H_1} - a}} + \frac{{{H_n} + b}}{{{H_n} - b}} = \frac{{\frac{1}{a} + \frac{1}{{{H_1}}}}}{{\frac{1}{a} - \frac{1}{{{H_1}}}}} + \frac{{\frac{1}{b} + \frac{1}{{{H_n}}}}}{{\frac{1}{b} - \frac{1}{{{H_n}}}}}\)
\( = \frac{{\frac{1}{a} +
\frac{1}{a} + d}}{{ - d}} + \frac{{\frac{1}{b} + \frac{1}{b} - d}}{d}\)
\( = - \frac{2}{{ad}} - 1 + \frac{2}{{bd}} - 1 = \frac{2}{d}\left( {\frac{1}{b} - \frac{1}{a}} \right) - 2\)
\( = \frac{2}{d}\left[ {(n + 1)d} \right] - 2 = 2n\)
Question 03: If \(A_1\) = {3}, \(A_2\) = {5, 7, 9}, \(A_3\) = {11, 13, 15, 17, 19}, \(A_4\) = {21, 23,
25, 27, 29, 31, 33} and so on, what is the average of the numbers of the set \(A_{20}\)?
(1) 761
(2) 763
(3) 765
(4) 767
Number of elements in \({A_1},\,{A_2},\,{A_3}\) are 1, 3, 5,…..
Hence total number of elements upto \({A_{19}}\) = 1 + 3 + 5 + 7 + …. + 19 terms = 19² = 361
(as sum of the first \(n\) odd numbers is \(n^2\))
So \({A_{20}}\)will contain
39 terms and will start with 362nd term of {3, 5, 7, 9, 11, ……}, that is 2×362 + 1 = 725.
Thus average of the series {725, 727, 729, ……..39 terms} will be 19th term of the series = 725 + 18×2 = 763
Question 04: If \(a, b, c\) are in A.P., \(p, q, r\) are in H.P. and \(ap, bq, cr\) in G.P., then \(\frac{p}{r}
+ \frac{r}{p}\) is equal to:
(1) \(\frac{a}{c} - \frac{c}{a}\)
(2) \(\frac{a}{c} + \frac{c}{a}\)
(3) \(\frac{b}{q} - \frac{a}{p}\)
(4) \(\frac{b}{q} + \frac{a}{p}\)
From the given information, we have
\(2b = a + c,\,q = \frac{{2pr}}{{p + r}},\;{b^2}{q^2} = acpr\)
Now \(\frac{p}{r} + \frac{r}{p} = \frac{{{{(p + r)}^2} - 2pr}}{{pr}} = \frac{{{{(p + r)}^2}}}{{pr}} - 2\)
Putting the value of \(p + r
= \frac{{2pr}}{q}\), we have
\(\frac{p}{r} + \frac{r}{p} = \frac{{{{(p + r)}^2}}}{{pr}} - 2 = \frac{{4pr}}{{{q^2}}} - 2\)
Put the value of \({q^2} = \frac{{acpr}}{{{b^2}}}\)
\(\frac{p}{r} + \frac{r}{p} = \frac{{4pr}}{{{q^2}}} - 2
= \frac{{4pr}}{{\frac{{acpr}}{{{b^2}}}}} - 2 = \frac{{4{b^2}}}{{ac}} - 2\)
\( = \frac{{{{(a + c)}^2}}}{{ac}} - 2 = \frac{{{a^2} + {c^2} + 2ac}}{{ac}} - 2 = \frac{a}{c} + \frac{c}{a}\)
Question 05: If the mean of the squares of first \(n\) natural numbers be 11, then \(n\) is equal to:
(1)
\( - \frac{{13}}{2}\)
(2) 11
(3) 5
(4) 4
Mean of the squares of first \(n\) natural numbers = \(\frac{{n(n + 1)(2n + 1)}}{{6n}} = \frac{{(n + 1)(2n + 1)}}{6}\)
\( \Rightarrow \frac{{(n + 1)(2n + 1)}}{6} = 11\)
Or \(n = 5\)
Question 06: The mean of first \(n\) natural numbers is equal to \(\frac{{n + 7}}{3},\) then \(n\) is equal
to:
(1) 9
(2) 10
(3) 11
(4) 12
Mean of the first \(n\)natural numbers \( = \frac{{n(n + 1)}}{{2n}} = \frac{{n + 1}}{2}\)
Given that \(\frac{{n + 1}}{2} = \frac{{n + 7}}{3} \Rightarrow 3n + 3 = 2n + 14\)
Or \(n = 11\)
Question 07: If three positive real number a, b, c (c > a) are in H.P., then log (a + c) + log (a – 2b
+ c) is
(1) 2 log (c – b)
(2) 2 log (a + c)
(3) 2 log (c – a)
(4) log a + log b + log c
Given that \(a,b,c\) are in HP, hence \(2b = \frac{{ac}}{{a + c}}\)
\( \Rightarrow \log (a - 2b + c) = \log \left( {a + c - \frac{{4ac}}{{a + c}}} \right)\)
\( = \log \left( {\frac{{{{(a + c)}^2} - 4ac}}{{a + c}}} \right) = \log \left( {\frac{{{{(c
- a)}^2}}}{{a + c}}} \right) = 2\log (c - a) - \log (a + c)\)
\(\log (a + c) + \log (a - 2b + c) = 2\log (c - a)\)
Question 08: The sum of 11² + 12² + 13² + …. + 30²
(1) 8070
(2) 9070
(3) 1080
(4) 9700
The required sum = \(\sum\limits_{n = 1}^{30} {{n^2}} - \sum\limits_{n = 1}^{10} {{n^2}} = \frac{{30 \times 31 \times 61}}{6} - \frac{{10 \times 11 \times 21}}{6}\)
\( = \frac{{30}}{6}\left( {31 \times 61 - 11 \times 7} \right) = 9070\)
The
value of \({9^{\frac{1}{3}}}\,\,{9^{\frac{1}{9}}}\,\,\,{9^{\frac{1}{{27}}}}...........\infty \) is:
Question 09: The value of \({9^{\frac{1}{3}}}\,\,{9^{\frac{1}{9}}}\,\,\,{9^{\frac{1}{{27}}}}...........\infty
\) is:
(1) 3
(2) 6
(3) 9
(4) None of these
The value is \({9^{\frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + .....\infty }} = {9^{\frac{{\frac{1}{3}}}{{\,\,1 - \frac{1}{3}\,\,}}}} = {9^{\frac{1}{2}}} = \sqrt 9 = 3\)
Question 10: The sum of integers between 200 and 400, that are multiples of 7 is:
(1) 8729
(2) 8700
(3) 8972
(4) 8279
The first number that is a multiple of 7 and more than 200 is 203. The last number is 399.
So the series is 203, 210, 217, ……. , 399
To find the number of terms in the series,
\(203 + (n - 1) \times 7 = 399\) or \(n = 29.\)
Sum of
the series = \(\frac{{203 + 399}}{2} \times 29 = 8729\)
Question 11: Sum of 20 terms of the series –1² + 2² –3² + 4² – … is:
(1) 180
(2) 200
(3) 210
(4)
220
The series is \( - {1^2} + {2^2} - {3^2} + {4^2} - ...... + {20^2}\)
Taking terms in pairs, we have
\(\underbrace { - {1^2} + {2^2}}_{}\underbrace { - {3^2} + {4^2}}_{} - ......\underbrace { - {{19}^2} + {{20}^2}}_{}\)
\({2^2} - {1^2}
= 3,\,\,{4^2} - {3^2} = 7,\,\,{6^2} - {5^2} = 11,....\)
The required sum is \(3 + 7 + 11 + ..... + 39 = \left( {\frac{{3 + 39}}{2}} \right) \times 10 = 210\)
Question 12: If \(a, b, c\) are in geometric progression, then \({\log _{ax}}x,{\log _{bx}}x\) and \({\log
_{cx}}x\) are in:
(1) Arithmetic progression
(2) Geometric progression
(3) Harmonic progression
(4) Arithmetico-geometric progression
Given that \(a,\,b,\,c\) are in GP, hence \({b^2} = ac\)
Multiplying by \({x^2}\) both sides,
\({x^2}{b^2} = (ax)(cx)\)
Taking log, both sides,
\({\log _x}({x^2}{b^2}) = {\log _x}(ax) + {\log _x}(cx)\)
\( \Rightarrow 2{\log _x}(bx)
= {\log _x}(ax) + {\log _x}(cx)\)
\( \Rightarrow {\log _x}(bx) - {\log _x}(ax) = {\log _x}(cx) - {\log _x}(bx)\)
Hence \({\log _x}(ax),\,{\log _x}(bx),\,{\log _x}(cx)\,\) are in AP.
Or \({\log _{ax}}x,{\log _{bx}}x\) and \({\log
_{cx}}x\) are in HP.
Question 13: he sum of the expression \(\frac{1}{{\sqrt 1 + \sqrt 2 }} + \frac{1}{{\sqrt 2 + \sqrt 3 }} + \frac{1}{{\sqrt
3 + \sqrt 4 }} + ..... + \frac{1}{{\sqrt {80} + \sqrt {81} }}\) is:
(1) 7
(2) 8
(3) 9
(4) 10
Rationalize the denominators, we get the following series,
\(\frac{{\sqrt 2 - 1}}{1} + \frac{{\sqrt 3 - \sqrt 2 }}{1} + \frac{{\sqrt 4 - \sqrt 3 }}{1} + ...\frac{{\sqrt {81} - \sqrt {80} }}{1}\)
\( = \sqrt {81} - 1 = 8\)
Question 14: If \({a_1},{a_2},.....,{a_n}\) are in A. P. and \({a_1} = 0,\) then the value of \(\left( {\frac{{{a_3}}}{{{a_2}}}
+ \frac{{{a_4}}}{{{a_3}}} + .... + \frac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\frac{1}{{{a_2}}} + \frac{1}{{{a_3}}} + ..... + \frac{1}{{{a_{n - 2}}}}} \right)\) is equal to
(1) \((n - 2) + \frac{1}{{(n - 2)}}\)
(2) \(\frac{1}{{n
- 2}}\)
(3) \(n - 2\)
(4) \(n - \frac{1}{{n - 2}}\)
Given that \({a_1} = 0\), hence \({a_2} = d,\,{a_3} = 2d,\,{a_4} = 3d,...\;{\rm{etc}}\).
The value of \(\left( {\frac{{{a_3}}}{{{a_2}}} + \frac{{{a_4}}}{{{a_3}}} + .... + \frac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\frac{1}{{{a_2}}}
+ \frac{1}{{{a_3}}} + ..... + \frac{1}{{{a_{n - 2}}}}} \right)\)
\(\left( {\frac{{2d}}{d} + \frac{{3d}}{{2d}} + ..... + \frac{{(n - 1)d}}{{(n - 2)d}}} \right) - d\left( {\frac{1}{d} + \frac{1}{{2d}} + .. + \frac{1}{{n - 3}}} \right)\)
\(
= \left( {\frac{2}{1} + \frac{3}{2} + .... + \frac{{n - 1}}{{n - 2}}} \right) - \left( {\frac{1}{1} + \frac{1}{2} + .... + \frac{1}{{n - 3}}} \right)\)
\( = \left( {\frac{2}{1} - \frac{1}{1}} \right) + \left( {\frac{3}{2} - \frac{1}{2}}
\right) + ....\left( {\frac{{n - 2}}{{n - 3}} - \frac{1}{{n - 3}}} \right) + \frac{{n - 1}}{{n - 2}}\)
\( = n - 3 + \frac{{n - 1}}{{n - 2}} = n - 3 + \frac{{n - 2}}{{n - 2}} + \frac{1}{{n - 2}} = n - 2 + \frac{1}{{n - 2}}\)
Question 15: Three positive number whose sum is 21 are in arithmetic progression. If 2, 2, 14 are added to
them respectively then resulting numbers are in geometric progression. Then which of the following is not among the three numbers?
(1) 25
(2) 13
(3) 1
(4) 7
Let the three terms in A.P. be a – d, a, a + d.
given that a – d + a + a + d = 21 a = 7
then the three term in A.P. are 7 – d, 7, 7 + d
According to given condition 9 – d, 9, 21 + d are in G.P.
(9)² = (9 – d) (21 + d)
81 =
189 + 9d – 21d – d²
81 = 189 – 12d – d²
d² + 12d – 108 = 0
(d – 6) (d + 18) = 0
We get, d = 6, –18
Putting d = 6 in the term 7 – d, 7, 7 + d we get 1, 7, 13.
Question 16: In an HP, \({{\rm{m}}^{{\rm{th}}}}\)term is \(n\) and \({{\rm{n}}^{{\rm{th}}}}\)term is \(m\),
where \(m \ne n\), then the value of \({(m + n)^{{\rm{th}}}}\) term is:
(1) \(\frac{{m + n}}{{mn}}\)
(2) \(\frac{{m + n}}{n}\)
(3) \(\frac{{m + n}}{m}\)
(4) \(\frac{{mn}}{{m + n}}\)
Let us take the reciprocal of the numbers and the numbers will be in AP. Hence
\(a + (n - 1)d = \frac{1}{m}\), \(a + (m - 1)d = \frac{1}{n}\) and \(a + (m + n - 1)d = x\)
We have to find \(x\) by eliminating \(a\) and \(d\). Subtract second
equation from first and third from second,
\((n - m)d = \frac{1}{m} - \frac{1}{n}\) \( \Rightarrow d = \frac{1}{{mn}}\)
\(nd = x - \frac{1}{n} \Rightarrow x = \frac{1}{m} + \frac{1}{n} = \frac{{mn}}{{m + n}}\)
Question 17: Sum to infinity of a geometric progression is twice the sum of first two terms. Then the possible
values of common ratios are:
(1) \( \pm \frac{1}{{\sqrt 2 }}\)
(2) \( \pm \frac{1}{2}\)
(3) \( \pm \frac{1}{{\sqrt 3 }}\)
(4) \( \pm \frac{1}{3}\)
Let the first term and common ratio are \(a\) and \(r\), then
\(\frac{a}{{1 - r}} = 2(a + ar)\)
\( \Rightarrow 2(1 + r)(1 - r) = 1\)
\( \Rightarrow 1 - {r^2} = \frac{1}{2}\) or \(r = \pm \frac{1}{{\sqrt 2 }}\)
Question 18: If a,b,c are in GP and log a – log2b, log2b – log3c and log3c – loga are in AP, then a, b, c are
the lengths of the sides of a triangle which is:
(1) Acute angle
(2) Obtuse angled
(3) Right angles
(4) Equilateral
Given that \(a,\,b,\,c\) are in GP, hence \({b^2} = ac\)
Also (log a – log2b), (log2b – log3c) and (log3c – loga) are in AP, hence
\(2\left[ {\log 2b - \log 3c} \right] = (\log a - \log 2b) + (\log 3c - \log a)\)
\( \Rightarrow 3\log
2b = 3\log 2c\)
Hence \(2b = 3c\)or \(4{b^2} = 9{c^2}\)
\(4(ac) = 9{c^2} \Rightarrow a = \frac{{9c}}{4}\)
Hence \(a:b:c = \frac{9}{4}:\frac{3}{2}:1 = 9:6:4\)
Since the biggest side is 9 and \({9^2} > {6^2} + {4^2}\), hence
the triangle is an obtuse angled triangle.
Question 19: If x, 2x + 2, 3x + 3 are the first three terms of a geometric progression, then 4th term in the
geometric progression is:
(1) –13.5
(2) 13.5
(3) –27
(4) 27
The ratio of third and second term is \(\frac{{3x + 3}}{{2x + 2}} = \frac{3}{2}\)
Hence \(\frac{{2x + 2}}{x} = \frac{3}{2} \Rightarrow x = - 4\)
The series will be – 4, – 6, – 9, – 13.5
Question 20: An arithmetic progression has 3 as its first term, also the sum of the first 8 terms is twice
the sum of the first 5 terms. Then what is the common difference?
(1) 45355
(2) 45293
(3) 45295
(4) 45385
Let the common difference is \(d\), then
\(\frac{8}{2}\left( {2 \times 3 + 7d} \right) = 2 \times \frac{5}{2}\left( {6 + 4d} \right)\)
Hence \(d = \frac{3}{4}\)
Question 21: The four geometric means between 2 and 64 are:
(1) \(\frac{1}{4},\frac{1}{8},\frac{1}{{16}},\frac{1}{{32}}\)
(2)
4, 8, 16, 32
(3) \(4\sqrt 2 ,8,16\sqrt 2 ,32\)
(4) None of these
Including the 4 geometric means, there are 6 terms in the GP, where the first term is 2 and the last term is 64.
\( \Rightarrow 2({r^5}) = 64\) or \(r = 2\)
The four geometric means are 4, 8, 16, 32.
Question 22: If \(H_1, H_2, ….H_n\) are \(n\) harmonic means between a and b, a ≠ b, then the value
of \(\frac{{{H_1} + a}}{{{H_1} - a}} + \frac{{{H_n} + b}}{{{H_n} - b}}\) is equal to:
(1) n + 1
(2) n – 1
(3) 2n
(4) 2n + 3
The numbers \(\frac{1}{a},\,\frac{1}{{{H_1}}},........\frac{1}{{{H_n}}},\,\frac{1}{b}\) are in AP, hence
\(\frac{1}{{{H_1}}} - \frac{1}{a} = \frac{1}{b} - \frac{1}{{{H_n}}} = d\) and \(\frac{1}{b} = \frac{1}{a} + (n + 1)d\)
Now \(\frac{{{H_1}
+ a}}{{{H_1} - a}} + \frac{{{H_n} + b}}{{{H_n} - b}} = \frac{{\frac{1}{a} + \frac{1}{{{H_1}}}}}{{\frac{1}{a} - \frac{1}{{{H_1}}}}} + \frac{{\frac{1}{b} + \frac{1}{{{H_n}}}}}{{\frac{1}{b} - \frac{1}{{{H_n}}}}}\)
\( = \frac{{\frac{1}{a} +
\frac{1}{a} + d}}{{ - d}} + \frac{{\frac{1}{b} + \frac{1}{b} - d}}{d}\)
\( = - \frac{2}{{ad}} - 1 + \frac{2}{{bd}} - 1 = \frac{2}{d}\left( {\frac{1}{b} - \frac{1}{a}} \right) - 2\)
\( = \frac{2}{d}\left[ {(n + 1)d} \right] - 2 = 2n\)
Question 23: In a harmonic Progression, \({p^{{\rm{th}}}}\) term is \(q\) and \({q^{{\rm{th}}}}\)term is \(p\),
then \(p{q^{{\rm{th}}}}\) term is:
(1) 0
(2) 1
(3) \(pq\)
(4) \(pq(p + q)\)
Let us take the reciprocal of the numbers and the numbers will be in AP. Hence
\(a + (p - 1)d = \frac{1}{q}\), \(a + (q - 1)d = \frac{1}{p}\) and \(a + (pq - 1)d = x\)
We have to find \(x\) by eliminating \(a\) and \(d\). Subtract second
equation from first and third from second,
\((p - q)d = \frac{1}{q} - \frac{1}{p}\) \( \Rightarrow d = \frac{1}{{pq}}\)
\((q - pq)d = \frac{1}{p} - x\)
Putting the value of \(d\), we get \(x = 1\)
Question 24: Which term of the series \(\frac{{\sqrt 5 }}{3},\,\frac{{\sqrt 5 }}{4},\frac{1}{{\sqrt 5 }},........\)
is \(\frac{{\sqrt 5 }}{{13}}\)?
(1) 12
(2) 11
(3) 10
(4) 9
The given series is \(\frac{{\sqrt 5 }}{3},\,\frac{{\sqrt 5 }}{4},\frac{{\sqrt 5 }}{5},........\frac{{\sqrt 5 }}{{13}}\)
So we just need to find the position of 13 in the sequence 3, 4, 5, 6……
The correct answer is 11.
\(\sin d\left(
{{\rm{cosec}}\,{a_1}{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}{\rm{cosec}}\,{a_3} + ..... + {\rm{cosec}}\,{a_{n - 1}}{\rm{cosec}}\,{a_n}} \right)\) is equal to:
Question 25: If \({a_1},\,{a_2},\,{a_3},....{a_n}\)are in Arithmetic Progression with common difference
\(d\), then the sum \(\sin d\left( {{\rm{cosec}}\,{a_1}{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}{\rm{cosec}}\,{a_3} + ..... + {\rm{cosec}}\,{a_{n - 1}}{\rm{cosec}}\,{a_n}} \right)\) is equal to:
(1) \(\cot {a_1} - \cot {a_n}\)
(2) \(\sin {a_1}
- \sin {a_n}\)
(3) \({\rm{cosec}}\,{a_1} - {\rm{cosec}}\,{a_n}\)
(4) \({a_1} - {a_n}\)
\(d = {a_2} - {a_1} = {a_3} - {a_2} = {a_4} - {a_3} = ...\)
First term of the given series is \(\sin d({\rm{cosec}}\,{a_1}{\rm{cosec}}\,{a_2})\)
\( = \frac{{\sin ({a_2} - {a_1})}}{{\sin {a_1}\sin {a_2}}} = \frac{{sin{a_2}\cos {a_1}
- \cos {a_2}\sin {a_1}}}{{\sin {a_1}\sin {a_2}}} = \cot {a_1} - \cot {a_2}\)
Similarly,
\(\sin d({\rm{cosec}}\,{a_2}{\rm{cosec}}\,{a_3}) = \frac{{\sin ({a_3} - {a_2})}}{{\sin {a_2}sin{a_3}}} = \cot {a_2} - \cot {a_3}\)
Writing all
the terms in this manner and adding them we get the sum as
\((\cot {a_2} - \cot {a_1}) + (\cot {a_3} - \cot {a_2}) + ...(\cot {a_n} - \cot {a_{n - 1}})\)
\( = \cot {a_1} - \cot {a_N}\)