NIMCET 2020 Question Paper and Solutions

Master NIMCET with the 2020 Question Paper Strengthen your MCA entrance preparation with the NIMCET 2020 Question Paper and Solutions. This resource helps you understand the exam pattern, question styles, and key concepts essential for success. Practice these questions and refer to the detailed solutions to refine your problem-solving skills and build confidence. A must-have for every NIMCET aspirant aiming for a top rank!

NIMCET 2020 PAPER AND SOLUTIONS

Question 01: If \(\left( {\begin{array}{left{20}{c}}{15}\\8\end{array}} \right) + \left( {\begin{array}{left{20}{c}}{15}\\7\end{array}} \right) = \left( {\begin{array}{left{20}{c}}n\\r\end{array}} \right)\), then the values of \(n\) and \(r\) are:
(a) 16 and 7
(b) 16 and 8
(c) 16 and 9
(d) 30 and 15

16 and 8

We know the formula that \(\left( {\begin{array}{{20}{c}}m\\k\end{array}} \right) + \left( {\begin{array}{{20}{c}}m\\{k + 1}\end{array}} \right) = \left( {\begin{array}{{20}{c}}{m + 1}\\{k + 1}\end{array}} \right)\),
Here \(m = 15\) and \(k = 7\), hence the desired sum is \(\left( {\begin{array}{{20}{c}}{16}\\8\end{array}} \right)\)
Thus \(n = 16\) and \(r = 8\).

...
 Click on Answer or Solution
Question 02: In a class of 50 students, it was found that 30 students read “Hitavad”, 35 students read “Hindustan” and 10 read neither. How many students read both: “Hitavad” and “Hindustan” newspapers?
(a) 25
(b) 20
(c) 15
(d) 30

25

Suppose number of students reading Hidavat and Hindustan are \(n(A)\) and \(n(B)\), then
\(n(A \cup B) = n(A.) + n(B.) - n(A \cap B)\)
\( \Rightarrow 50 - 10 = 30 + 35 - n(A \cap B)\)
\( \Rightarrow n(A \cap B) = 25\)

...
 Click on Answer or Solution
Question 03: If \(A = \{ {4^x} - x - 1:x \in \mathbb{N}\} \) and \(B = \{ 9(x - 1):x \in \mathbb{N}\} \), where \(\mathbb{N}\) is the set of natural numbers, then
(a) A ⊂ B
(b) A ⊆ B
(c) A ⊃ B
(d) A ⊇ B

A ⊂ B

Given that A = \({4^x} - 3x - 1\) and B = 9(x – 1)
By putting x = 1, 2, 3, 4… we see that,
A = {0, 9, 54, …} and B = {0, 9, 18, 27, …}
The set A is a proper subset of B or \(A \subset B\)
Alternately we can expand A as
\({(1 + 3)^x} - 3x - 1\)
\( = 1 + 3x + {\,^x}{{\rm{C}}_2} \cdot {3^2} + .... - 3x - 1\)
= a multiple of \(9\).
Here A and B are both multiple of 9, but B contains each multiple of 9 while A does not. Thus A is a subset of B.

...
 Click on Answer or Solution
Question 04: If \(A= \{x, y, z\}\), then the number of subsets in power set of \(A\) is:
(a) 6
(b) 8
(c) 7
(d) 9

8

A has 3 elements, hence number of subsets = \(2^3= 8\).

...
 Click on Answer or Solution
Question 05: How many words can be formed starting with letter D taking all letters from word DELHI so that the letters are not repeated:
(a) 4
(b) 12
(c) 24
(d) 120

24

In DELHI all the letters are different. The first letter is fixed, so the remaining 4 letters can be permuted in 4! ways.
Number of such words = 4! = 24.

...
 Click on Answer or Solution
Question 06: Naresh has 10 friends, and he wants to invite 6 of them to a party. How many times will 3 particular friends never attend the party?
(a) 8
(b) 7
(c) 720
(d) 35

7

Out of the 10 friends, 3 are not attending the party, so Naresh has to select 6 friends out of 7 friends.
Number of ways = \(^7{{\rm{C}}_6} = 7\)

...
 Click on Answer or Solution
Question 07: There is a young boy’s birthday party in which 3 friends have attended. The mother has arranged 10 games where a prize is awarded for a winning game. The prizes are identical. If each of the 4 children receives at least one prize, then how many distributions of prizes are possible?
(a) 80
(b) 84
(c) 70
(d) 72

84

Total number of prizes are 10 and there are 10 recipients, number of ways is equal to the number of solutions of the equation \(x + y + z + w = 10\), where \(x,\;y,\;z,\,\,w \ge 1\).
Hence the number of solutions = \(^{10 - 1}{{\rm{C}}_{4 - 1}} = {\,^9}{{\rm{C}}_3} = 84\)

...
 Click on Answer or Solution
Question 08: Three cities A, B, C are equidistant from each other. A motorist travels from A to B at 30km/hour, from B to C at 40km/hour and from C to A at 50km/hour. Then the average speed is
(a) 39km/hour
(b) 40km/hour
(c) 38.3km/hour
(d) 37.6km/hour

38.3km/hour

Suppose the distance AB = BC = CA = \(x\), then total journey = \(3x\) and total time taken in the journey = \(\frac{x}{{30}} + \frac{x}{{40}} + \frac{x}{{50}} = \frac{{47x}}{{600}}\).
Hence the average speed = \(\frac{{{\rm{Total}}\;\,{\rm{Journey}}}}{{{\rm{Total}}\;\,{\rm{time}}}}\)
\( = \frac{{3x}}{{\frac{{47x}}{{600}}}} = \frac{{1800}}{{47}} = 38.3\)

...
 Click on Answer or Solution
Question 09: A problem in Mathematics is given to 3 students A, B and C. If the probability of A solving the problem is \(\frac{1}{2}\) and B not solving it is \(\frac{1}{4}\). The whole probability of the problem being solved is \(\frac{{63}}{{64}}\), then what is the probability of solving it by C?
(a) \(\frac{1}{8}\)
(b) \(\frac{1}{{64}}\)
(c) \(\frac{7}{8}\)
(d) \(\frac{1}{2}\)

\(\frac{7}{8}\)

Probabilities that B will solve the problem = \(1 - \frac{1}{4} = \frac{3}{4}\). Let probability that C will solve the problem = \(p\), then probability that none of them is able to solve the problem = \(\frac{1}{2} \times \frac{1}{4} \times (1 - p) = \frac{{1 - p}}{8}\).
From the given information,
\(\frac{{1 - p}}{8} = \frac{1}{{64}} \Rightarrow p = \frac{7}{8}\)

...
 Click on Answer or Solution
Question 10: A and B play a game where each is asked to select a number from 1 to 25. If the two numbers match, both win a prize. The probability that they will not win a prize in a single trial is
(a) \(\frac{1}{{25}}\)
(b) \(\frac{{24}}{{25}}\)
(c) \(\frac{2}{{25}}\)
(d) \(\frac{3}{{25}}\)

\(\frac{{24}}{{25}}\)

A can select any number from the first 25 numbers with probability \(\frac{{25}}{{25}}\). Now B has to select a number different from A, this can be done with probability \(\frac{{24}}{{25}}\).
Required probability = \(\frac{{24}}{{25}}\).

...
 Click on Answer or Solution
Question 11: A, B, C are three sets of values of \(x\):
A: 2, 3, 7, 1, 3, 2, 3
B: 7, 5, 9, 12, 5, 3, 8
C: 4, 4, 11, 7, 2, 3, 4
Select the correct statement among the following:
(a) Mean of A is equal to Mode of C.
(b) Mean of C is equal to Median of B.
(c) Median of B is equal to Mode of A.
(d) Mean, Median and Mode of A are same.

Mean, Median and Mode of A are same.

Mean of A = \(\frac{{2 + 3 + 7 + 1 + 3 + 2 + 3}}{7} = 3\)
Median of A = 3 and Mode of A = 3
Choice (D) is correct.

...
 Click on Answer or Solution
Question 12: The standard deviation for the following distribution is: 
Size of item 6 7 8 9 10 11 12
Frequency 3 6 9 13 8 5 4
(a) 1.607
(b) 9.0
(c) 5.0
(d) 1.88

1.607

The formula for standard deviation is
\(\sqrt {\frac{{\sum {f{x^2}} }}{n} - {{\left( {\bar x} \right)}^2}} \), where \(\bar x\) is the mean of the data and \(\bar x = \frac{{\sum {fx} }}{n}\)
Hence \(\bar x = \frac{{3 \cdot 6 + 6 \cdot 7 + 9 \cdot 8 + .... + 4 \cdot 12}}{{3 + 6 + 9 + ... + 4}} = 9\)
\(\sum {f{x^2}} = 4012\)
Hence standard deviation = \(\sqrt {\frac{{4012}}{{48}} - {9^2}} = 1.607\)

...
 Click on Answer or Solution
Question 13: If A = \(\left[ {\begin{array}{left{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]\), then for any value of \(n\), the value of \(A_n\) is:
(a) \(\left[ {\begin{array}{left{20}{c}}{\sin n\alpha }&{\cos n\alpha }\\{ - \cos n\alpha }&{\sin n\alpha }\end{array}} \right]\)
(b) \(\left[ {\begin{array}{left{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{\sin n\alpha }&{\cos n\alpha }\end{array}} \right]\)
(c) \(\left[ {\begin{array}{left{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{\sin n\alpha }&{ - \cos n\alpha }\end{array}} \right]\)
(d) \(\left[ {\begin{array}{left{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{ - \sin n\alpha }&{\cos n\alpha }\end{array}} \right]\)

\(\left[ {\begin{array}{left{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{ - \sin n\alpha }&{\cos n\alpha }\end{array}} \right]\)

Given that \(A = \left[ {\begin{array}{{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]\), then
\({A^2} = \left[ {\begin{array}{{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]\left[ {\begin{array}{{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]\)
\( = \left[ {\begin{array}{{20}{c}}{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{2\sin \alpha \cos \alpha }\\{ - 2\sin \alpha \cos \alpha }&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }\end{array}} \right]\)
\( = \left[ {\begin{array}{{20}{c}}{\cos 2\alpha }&{\sin 2\alpha }\\{ - \sin 2\alpha }&{\cos 2\alpha }\end{array}} \right]\)
Similarly, it can be proved that
\({A^n} = \left[ {\begin{array}{{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{ - \sin n\alpha }&{\cos n\alpha }\end{array}} \right]\).

...
 Click on Answer or Solution
Question 14: Roots of equation \(a{x^2}-2bx + c = 0\) are \(n\) and \(m\), then the value of \(\frac{b}{{a{n^2} + c}} + \frac{b}{{a{m^2} + c}}\) is:
(a) \(\frac{c}{a}\)
(b) \(\frac{b}{c}\)
(c) \(\frac{a}{c}\)
(d) \(\frac{a}{b}\)

\(\frac{b}{c}\)

Roots are \(m\) and \(n\), thus
\(m + n = \frac{{2b}}{a},\;mn = \frac{c}{a}\)
Now \(\frac{b}{{a{n^2} + c}} + \frac{b}{{a{m^2} + c}} = \frac{b}{a}\left( {\frac{1}{{{n^2} + c/a}} + \frac{1}{{{m^2} + c/a}}} \right)\)
= \(\frac{{m + n}}{2}\left( {\frac{1}{{{n^2} + mn}} + \frac{1}{{{m^2} + mn}}} \right)\)
= \(\frac{{m + n}}{2}\left( {\frac{{m + n}}{{mn(m + n)}}} \right) = \frac{{m + n}}{{2mn}} = \frac{b}{c}\).

...
 Click on Answer or Solution
Question 15: The number of values of \(k\) for which the linear equations \(4x + ky + 2z = {\rm{ }}0,\;\;kx + 4y + z = {\rm{ }}0,{\rm{ }}2x + 2y + z = {\rm{ }}0\), possess a non-zero solution is
(a) 2
(b) 1
(c) 0
(d) 3

2

To possess a non-zero solution,
\(\left| {\begin{array}{*{20}{c}}4&k&2\\k&4&1\\2&2&1\end{array}} \right| = 0\)
\( \Rightarrow 4(2) - k(k - 2) + 2(2k - 8) = 0\)
\( \Rightarrow {k^2} - 6k + 8 = 0\)
Henec \(k = 2,\;4\). There are two possible values

...
 Click on Answer or Solution
Question 16: Let \(A = ({a_{ij}})\)and \(B = ({b_{ij}})\) be two square matrices of order \(n\) and \(\det (A)\) denotes the determinant of A. Then, which of the following is not correct?
(a) If A is a diagonal matrix, then \(\det (A ) = {a_{11}}{a_{22}}......{a_{nn}}\)
(b) \(\det (AB) = \det (A ) \cdot \det (B)\)
(c) \(\det (cA ) = c\det (A )\)
(d) \(\det (A ) = \det ({A^T})\), where \({A^T}\) denotes the transpose of the matrix A.

\(\det (cA ) = c\det (A )\)

Only third choice is wrong, the correct statement should be \(\det (cA) = {c^n}\det (A)\)where \(n\) is the order of the determinant.

...
 Click on Answer or Solution
Question 17: The tangent to the ellipse \(x^2 + 16y^2 = 16\) and making 60° angle with positive \(x\) axis is:
(a) x – √3 y + 7 = 0
(b) √3 x – y + 8 = 0
(c) √3 x – y + 7 = 0
(d) x + √3y + 7 = 0

√3 x – y + 7 = 0

The equation of the ellipse is \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\) and the slope of the tangent = \(\tan 60 = \sqrt 3 \).
If the equation of the tangent is \(y = mx + c\), then \({c^2} = {a^2}{m^2} + {b^2}\)
\( \Rightarrow {c^2} = 16 \times 3 + 1 = 49\)
Or \(c = \pm 7\)
Equation of the tangent is \(y = \sqrt 3 x \pm 7\)

...
 Click on Answer or Solution
Question 18: Find the number of point(s) of intersection of the ellipse \(\frac{{{x^2}}}{4} + \frac{{{{(y - 1)}^2}}}{9} = 1\) and the circle \({x^2} + {y^2} = 4\).
(a) 4
(b) 3
(c) 2
(d) 1

2

The centre of the ellipse is \((0,\,1)\) and its major axis lies on y axis. The circle passes through one of the vertex \((0,\, - 2)\) of the ellipse.

Hence there will be three intersection points

...
 Click on Answer or Solution
Question 19: An arithmetic progression has 3 as its first term. Also, the sum of the first 8 terms is twice the sum of the first 5 terms. Then what is the common difference?
(a) 3/4
(b) 1/2
(c) 1/4
(d) 4/3

3/4

Your solution here...

...
 Click on Answer or Solution
Question 20: If \(a + b + c = 0\), then the value of \(\frac{{{a^2}}}{{bc}} + \frac{{{b^2}}}{{ac}} + \frac{{{c^2}}}{{ac}}\) is:
(a) 1
(b) 0
(c) 3
(d) – 1

3

\(\frac{{{a^2}}}{{bc}} + \frac{{{b^2}}}{{ca}} + \frac{{{c^2}}}{{ab}}\; = \frac{{{a^3} + {b^3} + {c^3}}}{{abc}}\;\)
\( = \frac{{{a^3} + {b^3} + {c^3} - 3abc + 3abc}}{{abc}}\;\)
\(\frac{{ = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca)}}{{abc}} + 3\)
= 3.

...
 Click on Answer or Solution
Question 21: Find \(\mathop {\lim }\limits_{x \to 0} \,\,\left( {{x^2}{e^{\sin \frac{1}{x}}}} \right)\)
(a) 1
(b) limit does not exist
(c) infinity
(d) None of these

None of these

We know that \( - 1 \le \sin \left( {\frac{1}{x}} \right) \le 1\), so
\({e^{ - 1}} \le {e^{\sin \left( {\frac{1}{x}} \right)}} \le {e^1}\)
\( \Rightarrow \mathop {\lim }\limits_{x \to 0} \,{x^2}{e^{\sin \left( {\frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to 0} \,{x^2}\left( \lambda \right)\), where \(\lambda \)is a finite number that lies between \({e^{ - 1}}\) and \(e\).
Therefore \(\mathop {\lim }\limits_{x \to 0} \,{x^2}{e^{\sin \left( {\frac{1}{x}} \right)}} = 0\).

...
 Click on Answer or Solution
Question 22: If \(f(x) = \left\{ {\;\begin{array}{left{20}{c}}{{x^2}}&{x \le 0}\\{2\sin x}&{x > 0}\end{array}} \right.\), then \(x = 0\) is:
(a) Point of minima
(b) Point of maxima
(c) Point of discontinuity
(d) None of these

Point of minima

The graph of the function is given here. The point at \(x = 0\) is the point of minima.

...
 Click on Answer or Solution
Question 23: If \(g(x) = \left\{ {\begin{array}{left{20}{c}}{\frac{{{x^2} - 2x}}{{2x}}}&{x \ne 0}\\k&{x = 0}\end{array}} \right.\) is a continuous function at \(x = 0\), then the value of \(k\) is :
(a) 2
(b) 1/2
(c) 1
(d) None of these

None of these

The value of the function\(g(x)\) when \(x \ne 0\) is \(\frac{x}{2} - \frac{1}{2}\).
When \(x = 0 + h\) or \(x = 0 - h\), then \(g(x) = - \frac{1}{2}\).
As the function is continuous, so \(k = - \frac{1}{2}\).

...
 Click on Answer or Solution
Question 24: Find the interval(s) on which the graph \(y = 2{x^3}{e^x}\) is increasing:
(a) (– 3, 0) and (0, ∞)
(b) (– 3/2, 0) and (0, ∞)
(c) (– 3, ∞) only
(d) None of these

(– 3, ∞) only

The graph is given by \(y = 2{x^3}{e^x}\)
\(\frac{{dy}}{{dx}} = 6{x^2}{e^x} + 2{x^3}{e^x} = 2{e^x}(3 + x)\)
For increasing, \(\frac{{dy}}{{dx}} > 0\)
\( \Rightarrow 2{e^x}(3 + x) > 0\) or \(x > - 3\)

...
 Click on Answer or Solution
Question 25: If \(\int {{{\sec }^2}x\,\,{\rm{cose}}{{\rm{c}}^4}x} \,dx\) = \( - \frac{1}{3}{\cot ^3}x + k\tan x - 2\cot x + c\), then the value of \(k\) is:
(a) 1
(b) 2
(c) 3
(d) 4

1

\(\int {{{\sec }^2}x\,\,{\rm{cose}}{{\rm{c}}^4}x} \,dx = \int {\frac{1}{{{{\cos }^2}x{{\sin }^4}x}}} \,dx\)
\( = \int {\frac{1}{{{{\cot }^2}x{{\sin }^6}x}}dx = \int {\frac{{{\rm{cose}}{{\rm{c}}^6}x}}{{{{\cot }^2}x}}} \;dx} \)
\( = \int {\frac{{{{(1 + {{\cot }^2}x)}^2}{\rm{cose}}{{\rm{c}}^2}x}}{{{{\cot }^2}x}}dx} \)
Now put \(\cot x = t\), then \( - {\rm{cose}}{{\rm{c}}^2}x\,dx = dt\)
\( \Rightarrow - \int {\frac{{{{(1 + {t^2})}^2}}}{{{t^2}}}\,dt} = - \frac{{{t^3}}}{3} - 2t + \frac{1}{t}\)
= \( - \frac{1}{3}{\cot ^3}x - 2\cot x + \tan x\)
Hence \(k = 1\)

...
 Click on Answer or Solution
Question 26: Evaluate \(\int {{e^x}} \left( {\frac{{1 + \sin x\cos x}}{{{{\cos }^2}x}}} \right)dx\)
(a) \({e^x}\cos x + c\)
(b) \({e^x}\sec x\tan x + c\)
(c) \({e^x}\tan x + c\)
(d) \({e^x}{\cos ^2}x - 1 + c\)

\({e^x}\tan x + c\)

\(\int {{e^x}} \left( {\frac{{1 + \sin x\cos x}}{{{{\cos }^2}x}}} \right)dx = \int {{e^x}} (\tan x + {\sec ^2}x)\,dx\)
Using the result \(\int {{e^x}[f(x) + f'(x)]} dx = {e^x}f(x)\), the answer is :
\({e^x}\tan x + c\).

...
 Click on Answer or Solution
Question 27: If \({I_n} = \int\limits_0^a {({x^2} - {y^2})\,dx} \), where \(n\) is a positive integer, then the relation between \({I_n}\) and \({I_{n - 1}}\) is
(a) \({I_n} = \frac{{2n{a^2}}}{{2n + 1}}{I_{n - 1}}\)
(b) \({I_n} = \frac{{2n^2{a^2}}}{{2n - 1}}{I_{n - 1}}\)
(c) \({I_n} = \frac{{2n{a^2}}}{{2n - 1}}{I_{n - 1}}\)
(d) \({I_n} = \frac{{2n^2{a^2}}}{{2n+ 1}}{I_{n - 1}}\)

\({I_n} = \frac{{2n^2{a^2}}}{{2n+ 1}}{I_{n - 1}}\)

\({I_n} = \int\limits_0^a {{{({x^2} - {a^2})}^n}dx} \)
Integrating by parts,
\( = \left. {x{{({x^2} - {a^2})}^n}} \right|_0^a - \int\limits_0^a {n{{({x^2} - {a^2})}^{n - 1}}2{x^2}dx} \)
\( \Rightarrow {I_n} = 0 - 2n\int\limits_0^a {{x^2}{{({x^2} - {a^2})}^{n - 1}}dx} \)
\( \Rightarrow {I_n} = - 2n\int\limits_0^a {({x^2} - {a^2} + {a^2}){{({x^2} - {a^2})}^{n - 1}}dx} \)
\( - 2n\int\limits_0^a {{{({x^2} - {a^2})}^n}dx + 2n{a^2}\int\limits_0^a {{{({x^2} - {a^2})}^{n - 1}}dx} } \)
\( \Rightarrow {I_n} = - 2n{I_n} + 2n{a^2}{I_{n - 1}}\)
Hence \({I_n} = \frac{{2n{a^2}}}{{2n + 1}}\)

...
 Click on Answer or Solution
Question 28: The value of \(\int\limits_{ - 2}^2 {(a{x^5} + b{x^3} + c)} \,dx\) depends on the
(a) Value of \(b\)
(b) Value of \(c\)
(c) Value of \(a\)
(d) Value of \(a\) and \(b\)

Value of \(c\)

\(\int\limits_{ - 2}^2 {(a{x^5} + b{x^3} + c)dx} \) = \(\left( {\frac{{a{x^6}}}{6} + \frac{{b{x^4}}}{4} + cx} \right)_{ - 2}^2\)
= \(4c\). Therefore, the answer depends upon the value of \(c\).

...
 Click on Answer or Solution
Question 29: Find the area bounded by the line \(y = 3 - x\), the parabola \(y = {x^2} - 9\) and \(x \ge - 1\), \(y \ge 0\).
(a) 7/2
(b) 11/2
(c) 9/2
(d) None of these

None of these

The bounded region will be OAB, where OA = 4, OB = 4.

So the area = \(\frac{{4 \times 4}}{2} = 8\).

...
 Click on Answer or Solution
Question 30: If \(\vec a,\vec b,\vec c\) are three non-coplanar vectors, then \((\vec a + \vec b + \vec c).\left[ {\left( {\vec a + \vec b} \right) \times \left( {\vec a + \vec c} \right)} \right]\)
(a) 0
(b) \(\left[ {\vec a\;\vec b\;\vec c} \right]\)
(c) \(2\left[ {\vec a\;\vec b\;\vec c} \right]\)
(d) \(-\left[ {\vec a\;\vec b\;\vec c} \right]\)

\(-\left[ {\vec a\;\vec b\;\vec c} \right]\)

\((\vec a + \vec b + \vec c).\left[ {\left( {\vec a + \vec b} \right) \times \left( {\vec a + \vec c} \right)} \right]\) can be expanded as:
= \((\vec a + \vec b + \vec c).\left[ {\vec a \times \vec a + \vec a \times \vec c + \vec b \times \vec a + \vec b \times \vec c} \right]\)
\(\vec a \cdot (\vec b \times \vec c) + \vec b \cdot (\vec a \times \vec c) + \vec c \cdot (\vec b \times \vec a)\)
= \(\left[ {\vec a\;\vec b\;\vec c} \right] + \left[ {\vec b\;\vec a\;\;\vec c} \right] + \left[ {\vec c\;\vec b\;\vec a\;} \right] = - \left[ {\vec a\;\vec b\;\vec c} \right]\)

...
 Click on Answer or Solution
Question 31: Two forces \({F_1}\) and \({F_2}\) are used to pull a car, which met an accident. The angle between the two forces is \(\theta \). Find the values of \(\theta \) for which the resultant force is equal to:
(a) \(\theta = 0\)
(b) \(\theta = 45\)
(c) \(\theta = 90\)
(d) \(\theta = 135\)

\(\theta = 90\)

Resultant force of two vectors \({F_1},\;{F_2}\) is
\(\sqrt {F_{_1}^2 + F_2^2 + 2{F_1}{F_2}\cos \theta } \)
When \(\theta = 90,\) then resultant is \(\sqrt {\left\{ {F_1^2 + F_2^2} \right\}} \). Thus \(\theta = 90\).

...
 Click on Answer or Solution
Question 32: If \(\vec a,\vec b,\vec c,\vec d\;\) are four vectors such that \(\vec a + \vec b + \vec c\;\;\)Is collinear with \(\vec d\) and \(\vec b + \vec c + \;\vec d\;\) is collinear with \(\vec a,\) then \(\vec a + \vec b + \vec c + \vec d\;\) is
(a) \(\vec 0\)
(b) collinear with \(\vec a + \vec d\;\)
(c) collinear with \(\vec a - \vec d\)
(d) collinear with \(\vec b - \vec c\)

\(\vec 0\)

Given that \(\vec a + \vec b + \vec c\;\;\)is collinear with \(\vec d\), so
\(\vec a + \vec b + \vec c\;\; = \lambda \vec d\) …………. (1)
Also \(\vec b + \vec c + \;\vec d\;\) is collinear with \(\vec a,\) so
\(\vec b + \vec c + \;\vec d\; = \mu \vec a\) …………….(2)
From equation (1) – equation (2),
\(\vec a - \vec d = \lambda \vec d - \mu \vec a\)
By comparison, \(\lambda = - 1,\;\,\mu = - 1\;\)
Putting the value of \(\lambda \) in equation (1), we have,
\(\vec a + \vec b + \vec c = - \vec d\)
\( \Rightarrow \vec a + \vec b + \vec c + \vec d = 0\)

...
 Click on Answer or Solution
Question 33: Forces of magnitude 5, 3, 1 units act in the directions 6i + 2j + 3k, 3i – 2j + 6k, 2i – 3j – 6k respectively on a particle which is displaced from the point (2, – 1, – 3) to (5, – 1, 1). The total work done by the force is
(a) 21 units
(b) 5 units
(c) 33 units
(d) 105 units

33 units

Three forces are:
\({f_1} = 5\left( {\frac{{6i + 2j + 3k}}{{\sqrt {{6^2} + {2^2} + {3^2}} }}} \right) = \frac{5}{7}\left( {6i + 2j + 3k} \right)\)
\({f_2} = 3\left( {\frac{{3i - 2j + 6k}}{{\sqrt {{3^2} + {{( - 2)}^2} + {6^2}} }}} \right) = \frac{3}{7}\left( {3i - 2j + 6k} \right)\)
\({f_3} = \left( {\frac{{2i - 3j - 6k}}{{\sqrt {{2^2} + {{( - 3)}^2} + {{( - 6)}^2}} }}} \right) = \frac{1}{7}\left( {2i - 3j - 6k} \right)\)
Net force \(f = \left( {\frac{{41i + i + 27k}}{7}} \right)\)
Displacement = \(\vec d = (3i + 4k)\)
Work done = \(f \cdot d = \frac{{123 + 108}}{7} = 33\)

...
 Click on Answer or Solution
Question 34: The position vectors of points A and B are \(\vec a\) and \(\vec b\) . Then the position vector of point P dividing AB in the ratio \(m:n\) is
(a) \(\frac{{n\vec a + m\vec b}}{{m + n}}\)
(b) \(\frac{{n\vec a + m\vec b}}{{m - n}}\)
(c) \(\frac{{n\vec a - m\vec b}}{{m + n}}\)
(d) None of these

\(\frac{{n\vec a + m\vec b}}{{m + n}}\)

This is a direct formula. Position vector of the point \(p\) is \(\frac{{n\vec a + m\vec b}}{{m + n}}\).

...
 Click on Answer or Solution
Question 35: If \(\vec a,\vec b,\vec c\;\) are three non-zero vectors with no two of which are \(\vec a + 2\vec b\;\;\)is collinear with \(\vec c\) and \(\vec b + \overrightarrow {3c} \;\) is collinear with \(\vec a,\) then \(\left| {\vec a + 2\vec b + 6\vec c} \right|\) will be equal to
(a) 0
(b) 9
(c) 1
(d) None of above

0

Given that \(\vec a + 2\vec b\;\;\)is collinear with \(\vec c\)
\( \Rightarrow \vec a + 2\vec b = \lambda \vec c\) …….. (1)
Also \(\vec b + \overrightarrow {3c} \;\) is collinear with \(\vec a,\)
\( \Rightarrow \vec b + 3\vec c = \mu \vec a\) …….. (2)
Equating the value of \(2\vec b\) from the above two equations, we have
\(\lambda \vec c - \vec a = 2\mu \vec a - 6\vec c\)
By comparison, we have \(\lambda = - 6\). Putting this value in the first equation, we have
\(\vec a + 2\vec b = - 6\vec c\)
Or \(\left| {\vec a + 2\vec b + 6\vec c} \right| = 0\)

...
 Click on Answer or Solution
Question 36: Vertices of the vectors i – 2j + 2k, 2i + j – k and 3i – j + 2k form a triangle. This triangle is
(a) Equilateral triangle
(b) Right angle triangle
(c) Two sides are equal in length
(d) None of the above

Right angle triangle

Suppose the vertices are A, B and C, then
AB = \(i - 3j - 3k\)
BC = \(2i + j\)
CA = \(i - 2j + 3k\)
Here \({\rm{BC}} \cdot {\rm{AC}} = 2 - 2 = 0\)
Hence the triangle is right angled.

...
 Click on Answer or Solution
Question 37: If the volume of a parallelepiped whose adjacent edges are \(\vec a = 2i + 3j + 4k,\;\,\vec b = i + \alpha j + 2k,\;\,\vec c = i + 2j + \alpha k\) is 15, then \(\alpha \) is:
(a) 1
(b) 5/2
(c) 9/2
(d) 0

9/2

Volume = \(\left| {\begin{array}{*{20}{c}}2&3&4\\1&\alpha &2\\1&2&\alpha \end{array}} \right| = 15\)
\( \Rightarrow 2({\alpha ^2} - 4) - 3(\alpha - 2) + 4(2 - \alpha ) = 15\)
\( \Rightarrow 2{\alpha ^2} - 7\alpha - 9 = 0\)
\( \Rightarrow (\alpha + 1)(2\alpha - 9) = 0\)
Hence \(\alpha = - 1,\;\frac{9}{2}\)

...
 Click on Answer or Solution
Question 38: Solve the equation \({\sin ^2}x - \sin x - 2 = 0\) for \(x\) on the interval \(0 \le x \le 2\pi \)
(a) \(x = - \frac{\pi }{2}\) only
(b) \(x = \frac{\pi }{4}\;\;{\rm{and}}\;\frac{{2\pi }}{7}\)
(c) \(x = \frac{{2\pi }}{3}\;\;{\rm{and}}\;\frac{{2\pi }}{5}\)
(d) None of these

None of these

Given that \({\sin ^2}x - \sin x - 2 = 0\)
\( \Rightarrow (\sin x - 2)(\sin x + 1) = 0\)
\( \Rightarrow \sin x = - 1\)
Hence \(x = \frac{{3\pi }}{2}\)

...
 Click on Answer or Solution
Question 39: If \(\frac{{\tan x}}{2} = \frac{{\tan y}}{3} = \frac{{\tan z}}{5}\;\)and \(x + y + z = \pi \), then the value of \({\tan ^2}x + {\tan ^2}y + {\tan ^2}z\)
(a) 38/3
(b) 38
(c) 114
(d) None of these

38/3

Let \(\tan x = 2k,\;\tan y = 3k,\;\tan z = 5k\)
We know that when \(x + y + z = \pi \),
\(\tan x + \tan y + \tan z = \tan x\tan y\tan z\)
\( \Rightarrow 2k + 3k + 5k = (2k)(3k)(5k)\)
\( \Rightarrow 10k = 30{k^3}\) or \({k^2} = \frac{1}{3}\)
Hence \({\tan ^2}x + {\tan ^2}y + {\tan ^2}z = 4{k^2} + 9{k^2} + 25{k^2}\)
\( = 38{k^2} = \frac{{38}}{3}\)

...
 Click on Answer or Solution
Question 40: Find the value of sin 12°sin 48°sin 54°:
(a) 1/8
(b) 1/6
(c) 1/2
(d) 1/4

1/8

Multiply and divide by \(\sin 72\), we get
\(\frac{{\sin 12\sin 48\sin 72\sin 54}}{{\sin 72}}\)
\( = \frac{{\sin 36\sin 54}}{{4\sin 72}}\)
(using \(\sin \theta \sin (60 - \theta )\sin (60 + \theta ) = \frac{{\sin 3\theta }}{4}\))
\(\)\( = \frac{{2\sin 36\sin 54}}{{8\sin 72}} = \frac{{2\sin 36\cos 36}}{{8\sin 72}} = \frac{1}{8}\)

...
 Click on Answer or Solution
Question 41: If cos x = tan y, cot y = tan z and cot z = tan x, then sin x is:
(a) \(\frac{{\sqrt 5 + 1}}{2}\)
(b) \(\frac{{\sqrt 5 - 1}}{2}\)
(c) \(\frac{{\sqrt 5 + 1}}{4}\)
(d) \(\frac{{\sqrt 5 - 1}}{4}\)

\(\frac{{\sqrt 5 - 1}}{2}\)

Eliminating \(y\) from the given relations,
\(\cos x = \tan y = \frac{1}{{\cot y}} = \frac{1}{{\tan z}} = \cot z = \tan x\)
\( \Rightarrow \cos x = \tan x\)
Or \(\sin x = {\cos ^2}x = 1 - {\sin ^2}x\)
\(\Rightarrow \sin x = \frac{{ - 1 + \sqrt 5 }}{2}\)

...
 Click on Answer or Solution
Question 42: The value of \(\tan \left( {45 + \frac{A}{2}} \right)\) is
(a) cot θ – sec θ
(b) cot θ + sec θ
(c) tan θ – sec θ
(d) tan θ + sec θ

tan θ + sec θ

\(\tan \left( {45 + \frac{\theta }{2}} \right) = \frac{{1 + \tan \frac{\theta }{2}}}{{1 - \tan \frac{\theta }{2}}}\)
\( = \frac{{\sin \frac{\theta }{2} + \cos \frac{\theta }{2}}}{{\cos \frac{\theta }{2} - \sin \frac{\theta }{2}}} = \frac{{{{\left( {\sin \frac{\theta }{2} + \cos \frac{\theta }{2}} \right)}^2}}}{{{{\cos }^2}\frac{\theta }{2} - {{\sin }^2}\frac{\theta }{2}}}\)
\( = \frac{{1 + \sin \theta }}{{\cos \theta }} = \sec \theta  + \tan \theta \)

...
 Click on Answer or Solution
Question 43: The value of \(\sin {10^ \circ }\sin {50^ \circ }\sin {70^ \circ }\) is :
(a) \(\frac{1}{4}\)
(b) \(\frac{1}{2}\)
(c) \(\frac{3}{4}\)
(d) \(\frac{1}{8}\)

\(\frac{1}{8}\)

The value of \(\sin 10\sin 50\sin 70\) \( = \frac{{\sin (3 \times 10)}}{4} = \frac{1}{8}\)
(using \(\sin \theta \sin (60 - \theta )\sin (60 + \theta ) = \frac{{\sin 3\theta }}{4}\))

...
 Click on Answer or Solution
Question 44: The expression \(\frac{{\tan A}}{{1 - \cot A}} + \frac{{\cot A}}{{1 - \tan A}}\) can be written as
(a) sin A cos A + 1
(b) sec A cosec A + 1
(c) tan A + cot A
(d) sec A + cosec A

sec A cosec A + 1

The given expression is:
\(\frac{{\frac{{\sin x}}{{\cos x}}}}{{\,1 - \frac{{\cos x}}{{\sin x}}\,}} + \frac{{\frac{{\cos x}}{{\sin x}}}}{{\,1 - \frac{{\sin x}}{{\cos x}}\,}}\)
\( = \frac{{{{\sin }^2}x}}{{\cos x\,(\sin x - \cos x)}} + \frac{{{{\cos }^2}x}}{{\sin x\,(\cos x - \sin x)}}\)
\( = \frac{{{{\sin }^3}x - {{\cos }^3}x}}{{\sin x\cos x(\sin x - \cos x)}}\)
\( = \frac{{(\sin x - \cos x)({{\sin }^2}x + {{\cos }^2}x + \sin x\cos x)}}{{\sin x\cos x(\sin x - \cos x)}}\)
\( = 1 + \sec x{\rm{cosec}}x\)

...
 Click on Answer or Solution
Question 45: Angle of elevation of the top of the tower from 3 points (collinear) A, B and C on a road leading to the foot of the tower are 30°, 45° and 60°, respectively. The ratio of AB and BC is
(a) \(\sqrt 3 :1\)
(b) \(\sqrt 3 :2\)
(c) \(1:2\)
(d) \(2:\sqrt 3 \)

\(\sqrt 3 :1\)

Let the tower is PQ, and its height is \(h\), then

\(AQ = h\sqrt 3 \)
\(BQ = h\)
\(CQ = \frac{h}{{\sqrt 3 }}\)
\( \Rightarrow \frac{{AB}}{{BC}} = \frac{{h\sqrt 3  - h}}{{h - \frac{h}{{\sqrt 3 }}}} = \frac{{3 - \sqrt 3 }}{{\sqrt 3  - 1}} = \sqrt 3 \)

...
 Click on Answer or Solution
Question 46: The area enclosed between the curves \({y^2} = x\) and \(y = \left| x \right|\) is
(a) 2/3 sq. unit
(b) 1 sq. unit
(c) 1/6 sq. unit
(d) 1/3 sq. Unit

1/6 sq. unit

The graphs will intersect at the points (1, 1) and (0, 0)

Shaded area = \(\int\limits_0^1 {\left( {\sqrt x - x} \right)} \,dx = \left[ {\frac{{{x^{2/3}}}}{{2/3}} - \frac{{{x^2}}}{2}} \right]_0^1\)
\( = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}\)

...
 Click on Answer or Solution
Question 47: Test the continuity of the function at \(x = 2\) \(f(x) = \left\{ {\begin{array}{left{20}{c}}{\frac{5}{2} - x,}&{x < 2}\\{1,}&{x = 2}\\{x - \frac{3}{2},}&{x > 2}\end{array}} \right.\)
(a) Continuous at \(x = 2\)
(b) Discontinuous at \(x = 2\)
(c) Semi continuous at \(x = 2\)
(d) None of the above

Discontinuous at \(x = 2\)

The function is discontinuous at \(x = 2\)

...
 Click on Answer or Solution
Question 48: The value of \(2{\tan ^{ - 1}}\left[ {{\rm{cosec}}({{\tan }^{ - 1}}x) - \tan ({{\cot }^{ - 1}}x)} \right]\) is:
(a) tanx
(b) cotx
(c) tan⁻¹x
(d) cosec⁻¹x

tan⁻¹x

The given expression can be written as
\(2{\tan ^{ - 1}}\left[ {{\rm{cosec}}\left( {{\rm{cose}}{{\rm{c}}^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}} }}{x}} \right)} \right)} \right]\) \( - \tan \left( {{{\tan }^{ - 1}}\left( {\frac{1}{x}} \right)} \right)\)
\( = 2{\tan ^{ - 1}}\left[ {\frac{{\sqrt {1 + {x^2}} }}{x} - \frac{1}{x}} \right] = 2{\tan ^{ - 1}}\left[ {\frac{{\sqrt {1 + {x^2}} - 1}}{x}} \right]\)
Put \(x = \tan \theta \),
\( = 2{\tan ^{ - 1}}\left[ {\frac{{\sec \theta - 1}}{{\tan \theta }}} \right] = 2{\tan ^{ - 1}}\left( {\frac{{1 - \cos \theta }}{{\sin \theta }}} \right)\)
\( = 2{\tan ^{ - 1}}\left( {\frac{{2{{\sin }^2}\frac{\theta }{2}}}{{2\sin \frac{\theta }{2}\cos \frac{\theta }{2}}}} \right) = 2{\tan ^{ - 1}}\left( {\tan \frac{\theta }{2}} \right)\)
\( = \theta = {\tan ^{ - 1}}x\)

...
 Click on Answer or Solution
Question 49: If \(3\sin x + 4\cos x = 5\), then \(6\tan \frac{x}{2} - 9{\tan ^2}\frac{x}{2}\) is:
(a) 1
(b) 3
(c) 4
(d) 6

1

Given that \(\frac{3}{5}\sin x + \frac{4}{5}\cos x = 1\)
Since \({\sin ^2}x + {\cos ^2}x = 1\), so \(\sin x = \frac{3}{4},\;\cos x = \frac{4}{5}\)
\( \Rightarrow \frac{{1 - {{\tan }^2}\frac{x}{2}}}{{1 - {{\tan }^2}\frac{x}{2}}} = \frac{4}{5}\) or \(\tan \frac{x}{2} = \frac{1}{3}\)
\( \Rightarrow 6\tan \frac{x}{2} - 9{\tan ^2}\frac{x}{2} = \frac{6}{3} - \frac{9}{9} = 1\).

...
 Click on Answer or Solution
Question 50: If A is a subset of B and B is a subset of C, then cardinality of \({\rm{A}} \cup {\rm{B}} \cup {\rm{C}}\) is equal to:
(a) Cardinality of C
(b) Cardinality of B
(c) Cardinality of A
(d) None of the above

Cardinality of A

Given that B and C are both subsets of \(A\) , hence \({\rm{A}} \cup {\rm{B}} \cup {\rm{C}} = A\). So, cardinality will be same as that of \(A\).

...
 Click on Answer or Solution