NIMCET 2020 Question Paper and Solutions
Master NIMCET with the 2020 Question Paper Strengthen your MCA entrance preparation with the NIMCET 2020 Question Paper and Solutions. This resource helps you understand the exam pattern, question styles, and key concepts essential for success. Practice these questions and refer to the detailed solutions to refine your problem-solving skills and build confidence. A must-have for every NIMCET aspirant aiming for a top rank!
NIMCET 2020 PAPER AND SOLUTIONS
Question 01: If \(\left( {\begin{array}{left{20}{c}}{15}\\8\end{array}} \right) + \left( {\begin{array}{left{20}{c}}{15}\\7\end{array}} \right) = \left( {\begin{array}{left{20}{c}}n\\r\end{array}} \right)\), then
the values of \(n\) and \(r\) are:
(a) 16 and 7
(b) 16 and 8
(c) 16 and 9
(d) 30 and 15
16 and 8
We know the formula that \(\left( {\begin{array}{{20}{c}}m\\k\end{array}} \right) + \left( {\begin{array}{{20}{c}}m\\{k + 1}\end{array}} \right) = \left( {\begin{array}{{20}{c}}{m + 1}\\{k + 1}\end{array}} \right)\),
Here \(m = 15\) and \(k
= 7\), hence the desired sum is \(\left( {\begin{array}{{20}{c}}{16}\\8\end{array}} \right)\)
Thus \(n = 16\) and \(r = 8\).
Question 02: In a class of 50 students, it was found that 30 students read “Hitavad”, 35 students read “Hindustan” and 10 read neither. How many students read both: “Hitavad” and “Hindustan” newspapers?
(a) 25
(b)
20
(c) 15
(d) 30
25
Suppose number of students reading Hidavat and Hindustan are \(n(A)\) and \(n(B)\), then
\(n(A \cup B) = n(A.) + n(B.) - n(A \cap B)\)
\( \Rightarrow 50 - 10 = 30 + 35 - n(A \cap B)\)
\( \Rightarrow n(A \cap B) = 25\)
Question 03: If \(A = \{ {4^x} - x - 1:x \in \mathbb{N}\} \) and \(B = \{ 9(x - 1):x \in \mathbb{N}\} \), where \(\mathbb{N}\) is the set of natural numbers, then
(a) A ⊂ B
(b) A ⊆ B
(c) A ⊃ B
(d) A ⊇
B
A ⊂ B
Given that A = \({4^x} - 3x - 1\) and B = 9(x – 1)
By putting x = 1, 2, 3, 4… we see that,
A = {0, 9, 54, …} and B = {0, 9, 18, 27, …}
The set A is a proper subset of B or \(A \subset B\)
Alternately we can expand A as
\({(1 + 3)^x}
- 3x - 1\)
\( = 1 + 3x + {\,^x}{{\rm{C}}_2} \cdot {3^2} + .... - 3x - 1\)
= a multiple of \(9\).
Here A and B are both multiple of 9, but B contains each multiple of 9 while A does not. Thus A is a subset of B.
Question 04: If \(A= \{x, y, z\}\), then the number of subsets in power set of \(A\) is:
(a) 6
(b) 8
(c) 7
(d) 9
8
A has 3 elements, hence number of subsets = \(2^3= 8\).
Question 05: How many words can be formed starting with letter D taking all letters from word DELHI so that the letters are not repeated:
(a) 4
(b) 12
(c) 24
(d) 120
24
In DELHI all the letters are different. The first letter is fixed, so the remaining 4 letters can be permuted in 4! ways.
Number of such words = 4! = 24.
Question 06: Naresh has 10 friends, and he wants to invite 6 of them to a party. How many times will 3 particular friends never attend the party?
(a) 8
(b) 7
(c) 720
(d) 35
7
Out of the 10 friends, 3 are not attending the party, so Naresh has to select 6 friends out of 7 friends.
Number of ways = \(^7{{\rm{C}}_6} = 7\)
Question 07: There is a young boy’s birthday party in which 3 friends have attended. The mother has arranged 10 games where a prize is awarded for a winning game. The prizes are identical. If each of the 4 children
receives at least one prize, then how many distributions of prizes are possible?
(a) 80
(b) 84
(c) 70
(d) 72
84
Total number of prizes are 10 and there are 10 recipients, number of ways is equal to the number of solutions of the equation \(x + y + z + w = 10\), where \(x,\;y,\;z,\,\,w \ge 1\).
Hence the number of solutions = \(^{10 - 1}{{\rm{C}}_{4 -
1}} = {\,^9}{{\rm{C}}_3} = 84\)
Question 08: Three cities A, B, C are equidistant from each other. A motorist travels from A to B at 30km/hour, from B to C at 40km/hour and from C to A at 50km/hour. Then the average speed is
(a) 39km/hour
(b)
40km/hour
(c) 38.3km/hour
(d) 37.6km/hour
38.3km/hour
Suppose the distance AB = BC = CA = \(x\), then total journey = \(3x\) and total time taken in the journey = \(\frac{x}{{30}} + \frac{x}{{40}} + \frac{x}{{50}} = \frac{{47x}}{{600}}\).
Hence the average speed = \(\frac{{{\rm{Total}}\;\,{\rm{Journey}}}}{{{\rm{Total}}\;\,{\rm{time}}}}\)
\(
= \frac{{3x}}{{\frac{{47x}}{{600}}}} = \frac{{1800}}{{47}} = 38.3\)
Question 09: A problem in Mathematics is given to 3 students A, B and C. If the probability of A solving the problem is \(\frac{1}{2}\) and B not solving it is \(\frac{1}{4}\). The whole probability of the problem
being solved is \(\frac{{63}}{{64}}\), then what is the probability of solving it by C?
(a) \(\frac{1}{8}\)
(b) \(\frac{1}{{64}}\)
(c) \(\frac{7}{8}\)
(d) \(\frac{1}{2}\)
\(\frac{7}{8}\)
Probabilities that B will solve the problem = \(1 - \frac{1}{4} = \frac{3}{4}\). Let probability that C will solve the problem = \(p\), then probability that none of them is able to solve the problem = \(\frac{1}{2} \times \frac{1}{4} \times (1
- p) = \frac{{1 - p}}{8}\).
From the given information,
\(\frac{{1 - p}}{8} = \frac{1}{{64}} \Rightarrow p = \frac{7}{8}\)
Question 10: A and B play a game where each is asked to select a number from 1 to 25. If the two numbers match, both win a prize. The probability that they will not win a prize in a single trial is
(a) \(\frac{1}{{25}}\)
(b)
\(\frac{{24}}{{25}}\)
(c) \(\frac{2}{{25}}\)
(d) \(\frac{3}{{25}}\)
\(\frac{{24}}{{25}}\)
A can select any number from the first 25 numbers with probability \(\frac{{25}}{{25}}\). Now B has to select a number different from A, this can be done with probability \(\frac{{24}}{{25}}\).
Required probability = \(\frac{{24}}{{25}}\).
Question 11: A, B, C are three sets of values of \(x\):
A: 2, 3, 7, 1, 3, 2, 3
B: 7, 5, 9, 12, 5, 3, 8
C: 4, 4, 11, 7, 2, 3, 4
Select the correct statement among the following:
(a) Mean of A is equal to Mode of C.
(b) Mean of C is equal to Median of B.
(c) Median of B is equal to Mode of A.
(d) Mean, Median and Mode of A are same.
Mean, Median and Mode of A are same.
Mean of A = \(\frac{{2 + 3 + 7 + 1 + 3 + 2 + 3}}{7} = 3\)
Median of A = 3 and Mode of A = 3
Choice (D) is correct.
Question 12: The standard deviation for the following distribution is:
| Size of item | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Frequency | 3 | 6 | 9 | 13 | 8 | 5 | 4 |
(b) 9.0
(c) 5.0
(d) 1.88
1.607
The formula for standard deviation is
\(\sqrt {\frac{{\sum {f{x^2}} }}{n} - {{\left( {\bar x} \right)}^2}} \), where \(\bar x\) is the mean of the data and \(\bar x = \frac{{\sum {fx} }}{n}\)
Hence \(\bar x = \frac{{3 \cdot 6 + 6 \cdot
7 + 9 \cdot 8 + .... + 4 \cdot 12}}{{3 + 6 + 9 + ... + 4}} = 9\)
\(\sum {f{x^2}} = 4012\)
Hence standard deviation = \(\sqrt {\frac{{4012}}{{48}} - {9^2}} = 1.607\)
Question 13: If A = \(\left[ {\begin{array}{left{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]\), then for any value of \(n\), the value of \(A_n\) is:
(a)
\(\left[ {\begin{array}{left{20}{c}}{\sin n\alpha }&{\cos n\alpha }\\{ - \cos n\alpha }&{\sin n\alpha }\end{array}} \right]\)
(b) \(\left[ {\begin{array}{left{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{\sin n\alpha }&{\cos n\alpha
}\end{array}} \right]\)
(c) \(\left[ {\begin{array}{left{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{\sin n\alpha }&{ - \cos n\alpha }\end{array}} \right]\)
(d) \(\left[ {\begin{array}{left{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{
- \sin n\alpha }&{\cos n\alpha }\end{array}} \right]\)
\(\left[ {\begin{array}{left{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{ - \sin n\alpha }&{\cos n\alpha }\end{array}} \right]\)
Given that \(A = \left[ {\begin{array}{{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]\), then
\({A^2} = \left[ {\begin{array}{{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos
\alpha }\end{array}} \right]\left[ {\begin{array}{{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]\)
\( = \left[ {\begin{array}{{20}{c}}{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{2\sin
\alpha \cos \alpha }\\{ - 2\sin \alpha \cos \alpha }&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }\end{array}} \right]\)
\( = \left[ {\begin{array}{{20}{c}}{\cos 2\alpha }&{\sin 2\alpha }\\{ - \sin 2\alpha }&{\cos 2\alpha }\end{array}}
\right]\)
Similarly, it can be proved that
\({A^n} = \left[ {\begin{array}{{20}{c}}{\cos n\alpha }&{\sin n\alpha }\\{ - \sin n\alpha }&{\cos n\alpha }\end{array}} \right]\).
Question 14: Roots of equation \(a{x^2}-2bx + c = 0\) are \(n\) and \(m\), then the value of \(\frac{b}{{a{n^2} + c}} + \frac{b}{{a{m^2} + c}}\) is:
(a) \(\frac{c}{a}\)
(b) \(\frac{b}{c}\)
(c) \(\frac{a}{c}\)
(d)
\(\frac{a}{b}\)
\(\frac{b}{c}\)
Roots are \(m\) and \(n\), thus
\(m + n = \frac{{2b}}{a},\;mn = \frac{c}{a}\)
Now \(\frac{b}{{a{n^2} + c}} + \frac{b}{{a{m^2} + c}} = \frac{b}{a}\left( {\frac{1}{{{n^2} + c/a}} + \frac{1}{{{m^2} + c/a}}} \right)\)
= \(\frac{{m + n}}{2}\left(
{\frac{1}{{{n^2} + mn}} + \frac{1}{{{m^2} + mn}}} \right)\)
= \(\frac{{m + n}}{2}\left( {\frac{{m + n}}{{mn(m + n)}}} \right) = \frac{{m + n}}{{2mn}} = \frac{b}{c}\).
Question 15: The number of values of \(k\) for which the linear equations \(4x + ky + 2z = {\rm{ }}0,\;\;kx + 4y + z = {\rm{ }}0,{\rm{ }}2x + 2y + z = {\rm{ }}0\), possess a non-zero solution is
(a) 2
(b) 1
(c)
0
(d) 3
2
To possess a non-zero solution,
\(\left| {\begin{array}{*{20}{c}}4&k&2\\k&4&1\\2&2&1\end{array}} \right| = 0\)
\( \Rightarrow 4(2) - k(k - 2) + 2(2k - 8) = 0\)
\( \Rightarrow {k^2} - 6k + 8 = 0\)
Henec
\(k = 2,\;4\). There are two possible values
Question 16: Let \(A = ({a_{ij}})\)and \(B = ({b_{ij}})\) be two square matrices of order \(n\) and \(\det (A)\) denotes the determinant of A. Then, which of the following is not correct?
(a) If A is a diagonal
matrix, then \(\det (A ) = {a_{11}}{a_{22}}......{a_{nn}}\)
(b) \(\det (AB) = \det (A ) \cdot \det (B)\)
(c) \(\det (cA ) = c\det (A )\)
(d) \(\det (A ) = \det ({A^T})\), where \({A^T}\) denotes the transpose of the matrix A.
\(\det (cA ) = c\det (A )\)
Only third choice is wrong, the correct statement should be \(\det (cA) = {c^n}\det (A)\)where \(n\) is the order of the determinant.
Question 17: The tangent to the ellipse \(x^2 + 16y^2 = 16\) and making 60° angle with positive \(x\) axis is:
(a) x – √3 y + 7 = 0
(b) √3 x – y + 8 = 0
(c) √3 x – y + 7 = 0
(d) x + √3y + 7 = 0
√3 x – y + 7 = 0
The equation of the ellipse is \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\) and the slope of the tangent = \(\tan 60 = \sqrt 3 \).
If the equation of the tangent is \(y = mx + c\), then \({c^2} = {a^2}{m^2} + {b^2}\)
\( \Rightarrow {c^2}
= 16 \times 3 + 1 = 49\)
Or \(c = \pm 7\)
Equation of the tangent is \(y = \sqrt 3 x \pm 7\)
Question 18: Find the number of point(s) of intersection of the ellipse \(\frac{{{x^2}}}{4} + \frac{{{{(y - 1)}^2}}}{9} = 1\) and the circle \({x^2} + {y^2} = 4\).
(a) 4
(b) 3
(c) 2
(d) 1
2
The centre of the ellipse is \((0,\,1)\) and its major axis lies on y axis. The circle passes through one of the vertex \((0,\, - 2)\) of the ellipse. 
Hence there will be three intersection points
Question 19: An arithmetic progression has 3 as its first term. Also, the sum of the first 8 terms is twice the sum of the first 5 terms. Then what is the common difference?
(a) 3/4
(b) 1/2
(c) 1/4
(d)
4/3
3/4
Your solution here...
Question 20: If \(a + b + c = 0\), then the value of \(\frac{{{a^2}}}{{bc}} + \frac{{{b^2}}}{{ac}} + \frac{{{c^2}}}{{ac}}\) is:
(a) 1
(b) 0
(c) 3
(d) – 1
3
\(\frac{{{a^2}}}{{bc}} + \frac{{{b^2}}}{{ca}} + \frac{{{c^2}}}{{ab}}\; = \frac{{{a^3} + {b^3} + {c^3}}}{{abc}}\;\)
\( = \frac{{{a^3} + {b^3} + {c^3} - 3abc + 3abc}}{{abc}}\;\)
\(\frac{{ = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca)}}{{abc}}
+ 3\)
= 3.
Question 21: Find \(\mathop {\lim }\limits_{x \to 0} \,\,\left( {{x^2}{e^{\sin \frac{1}{x}}}} \right)\)
(a) 1
(b) limit does not exist
(c) infinity
(d) None of these
None of these
We know that \( - 1 \le \sin \left( {\frac{1}{x}} \right) \le 1\), so
\({e^{ - 1}} \le {e^{\sin \left( {\frac{1}{x}} \right)}} \le {e^1}\)
\( \Rightarrow \mathop {\lim }\limits_{x \to 0} \,{x^2}{e^{\sin \left( {\frac{1}{x}} \right)}} = \mathop
{\lim }\limits_{x \to 0} \,{x^2}\left( \lambda \right)\), where \(\lambda \)is a finite number that lies between \({e^{ - 1}}\) and \(e\).
Therefore \(\mathop {\lim }\limits_{x \to 0} \,{x^2}{e^{\sin \left( {\frac{1}{x}} \right)}} = 0\).
Question 22: If \(f(x) = \left\{ {\;\begin{array}{left{20}{c}}{{x^2}}&{x \le 0}\\{2\sin x}&{x > 0}\end{array}} \right.\), then \(x = 0\) is:
(a) Point of minima
(b) Point of maxima
(c) Point
of discontinuity
(d) None of these
Point of minima
The graph of the function is given here. The point at \(x = 0\) is the point of minima.
Question 23: If \(g(x) = \left\{ {\begin{array}{left{20}{c}}{\frac{{{x^2} - 2x}}{{2x}}}&{x \ne 0}\\k&{x = 0}\end{array}} \right.\) is a continuous function at \(x = 0\), then the value of \(k\) is :
(a) 2
(b) 1/2
(c) 1
(d) None of these
None of these
The value of the function\(g(x)\) when \(x \ne 0\) is \(\frac{x}{2} - \frac{1}{2}\).
When \(x = 0 + h\) or \(x = 0 - h\), then \(g(x) = - \frac{1}{2}\).
As the function is continuous, so \(k = - \frac{1}{2}\).
Question 24: Find the interval(s) on which the graph \(y = 2{x^3}{e^x}\) is increasing:
(a) (– 3, 0) and (0, ∞)
(b) (– 3/2, 0) and (0, ∞)
(c) (– 3, ∞) only
(d) None of these
(– 3, ∞) only
The graph is given by \(y = 2{x^3}{e^x}\)
\(\frac{{dy}}{{dx}} = 6{x^2}{e^x} + 2{x^3}{e^x} = 2{e^x}(3 + x)\)
For increasing, \(\frac{{dy}}{{dx}} > 0\)
\( \Rightarrow 2{e^x}(3 + x) > 0\) or \(x > - 3\)
Question 25: If \(\int {{{\sec }^2}x\,\,{\rm{cose}}{{\rm{c}}^4}x} \,dx\) = \( - \frac{1}{3}{\cot ^3}x + k\tan x - 2\cot x + c\), then the value of \(k\) is:
(a) 1
(b) 2
(c) 3
(d) 4
1
\(\int {{{\sec }^2}x\,\,{\rm{cose}}{{\rm{c}}^4}x} \,dx = \int {\frac{1}{{{{\cos }^2}x{{\sin }^4}x}}} \,dx\)
\( = \int {\frac{1}{{{{\cot }^2}x{{\sin }^6}x}}dx = \int {\frac{{{\rm{cose}}{{\rm{c}}^6}x}}{{{{\cot }^2}x}}} \;dx} \)
\( = \int
{\frac{{{{(1 + {{\cot }^2}x)}^2}{\rm{cose}}{{\rm{c}}^2}x}}{{{{\cot }^2}x}}dx} \)
Now put \(\cot x = t\), then \( - {\rm{cose}}{{\rm{c}}^2}x\,dx = dt\)
\( \Rightarrow - \int {\frac{{{{(1 + {t^2})}^2}}}{{{t^2}}}\,dt} = - \frac{{{t^3}}}{3}
- 2t + \frac{1}{t}\)
= \( - \frac{1}{3}{\cot ^3}x - 2\cot x + \tan x\)
Hence \(k = 1\)
Question 26: Evaluate \(\int {{e^x}} \left( {\frac{{1 + \sin x\cos x}}{{{{\cos }^2}x}}} \right)dx\)
(a) \({e^x}\cos x + c\)
(b) \({e^x}\sec x\tan x + c\)
(c) \({e^x}\tan x + c\)
(d) \({e^x}{\cos ^2}x
- 1 + c\)
\({e^x}\tan x + c\)
\(\int {{e^x}} \left( {\frac{{1 + \sin x\cos x}}{{{{\cos }^2}x}}} \right)dx = \int {{e^x}} (\tan x + {\sec ^2}x)\,dx\)
Using the result \(\int {{e^x}[f(x) + f'(x)]} dx = {e^x}f(x)\), the answer is :
\({e^x}\tan x + c\).
Question 27: If \({I_n} = \int\limits_0^a {({x^2} - {y^2})\,dx} \), where \(n\) is a positive integer, then the relation between \({I_n}\) and \({I_{n - 1}}\) is
(a) \({I_n} = \frac{{2n{a^2}}}{{2n + 1}}{I_{n -
1}}\)
(b) \({I_n} = \frac{{2n^2{a^2}}}{{2n - 1}}{I_{n - 1}}\)
(c) \({I_n} = \frac{{2n{a^2}}}{{2n - 1}}{I_{n - 1}}\)
(d) \({I_n} = \frac{{2n^2{a^2}}}{{2n+ 1}}{I_{n - 1}}\)
\({I_n} = \frac{{2n^2{a^2}}}{{2n+ 1}}{I_{n - 1}}\)
\({I_n} = \int\limits_0^a {{{({x^2} - {a^2})}^n}dx} \)
Integrating by parts,
\( = \left. {x{{({x^2} - {a^2})}^n}} \right|_0^a - \int\limits_0^a {n{{({x^2} - {a^2})}^{n - 1}}2{x^2}dx} \)
\( \Rightarrow {I_n} = 0 - 2n\int\limits_0^a
{{x^2}{{({x^2} - {a^2})}^{n - 1}}dx} \)
\( \Rightarrow {I_n} = - 2n\int\limits_0^a {({x^2} - {a^2} + {a^2}){{({x^2} - {a^2})}^{n - 1}}dx} \)
\( - 2n\int\limits_0^a {{{({x^2} - {a^2})}^n}dx + 2n{a^2}\int\limits_0^a {{{({x^2} - {a^2})}^{n
- 1}}dx} } \)
\( \Rightarrow {I_n} = - 2n{I_n} + 2n{a^2}{I_{n - 1}}\)
Hence \({I_n} = \frac{{2n{a^2}}}{{2n + 1}}\)
Question 28: The value of \(\int\limits_{ - 2}^2 {(a{x^5} + b{x^3} + c)} \,dx\) depends on the
(a) Value of \(b\)
(b) Value of \(c\)
(c) Value of \(a\)
(d) Value of \(a\) and \(b\)
Value of \(c\)
\(\int\limits_{ - 2}^2 {(a{x^5} + b{x^3} + c)dx} \) = \(\left( {\frac{{a{x^6}}}{6} + \frac{{b{x^4}}}{4} + cx} \right)_{ - 2}^2\)
= \(4c\). Therefore, the answer depends upon the value of \(c\).
Question 29: Find the area bounded by the line \(y = 3 - x\), the parabola \(y = {x^2} - 9\) and \(x \ge - 1\), \(y \ge 0\).
(a) 7/2
(b) 11/2
(c) 9/2
(d) None of these
None of these
The bounded region will be OAB, where OA = 4, OB = 4. 
So
the area = \(\frac{{4 \times 4}}{2} = 8\).
Question 30: If \(\vec a,\vec b,\vec c\) are three non-coplanar vectors, then \((\vec a + \vec b + \vec c).\left[ {\left( {\vec a + \vec b} \right) \times \left( {\vec a + \vec c} \right)} \right]\)
(a) 0
(b) \(\left[ {\vec a\;\vec b\;\vec c} \right]\)
(c) \(2\left[ {\vec a\;\vec b\;\vec c} \right]\)
(d) \(-\left[ {\vec a\;\vec b\;\vec c} \right]\)
\(-\left[ {\vec a\;\vec b\;\vec c} \right]\)
\((\vec a + \vec b + \vec c).\left[ {\left( {\vec a + \vec b} \right) \times \left( {\vec a + \vec c} \right)} \right]\) can be expanded as:
= \((\vec a + \vec b + \vec c).\left[ {\vec a \times \vec a + \vec a \times \vec c + \vec b \times
\vec a + \vec b \times \vec c} \right]\)
\(\vec a \cdot (\vec b \times \vec c) + \vec b \cdot (\vec a \times \vec c) + \vec c \cdot (\vec b \times \vec a)\)
= \(\left[ {\vec a\;\vec b\;\vec c} \right] + \left[ {\vec b\;\vec a\;\;\vec
c} \right] + \left[ {\vec c\;\vec b\;\vec a\;} \right] = - \left[ {\vec a\;\vec b\;\vec c} \right]\)
Question 31: Two forces \({F_1}\) and \({F_2}\) are used to pull a car, which met an accident. The angle between the two forces is \(\theta \). Find the values of \(\theta \) for which the resultant force is equal
to:
(a) \(\theta = 0\)
(b) \(\theta = 45\)
(c) \(\theta = 90\)
(d) \(\theta = 135\)
\(\theta = 90\)
Resultant force of two vectors \({F_1},\;{F_2}\) is
\(\sqrt {F_{_1}^2 + F_2^2 + 2{F_1}{F_2}\cos \theta } \)
When \(\theta = 90,\) then resultant is \(\sqrt {\left\{ {F_1^2 + F_2^2} \right\}} \). Thus \(\theta = 90\).
Question 32: If \(\vec a,\vec b,\vec c,\vec d\;\) are four vectors such that \(\vec a + \vec b + \vec c\;\;\)Is collinear with \(\vec d\) and \(\vec b + \vec c + \;\vec d\;\) is collinear with \(\vec a,\) then \(\vec
a + \vec b + \vec c + \vec d\;\) is
(a) \(\vec 0\)
(b) collinear with \(\vec a + \vec d\;\)
(c) collinear with \(\vec a - \vec d\)
(d) collinear with \(\vec b - \vec c\)
\(\vec 0\)
Given that \(\vec a + \vec b + \vec c\;\;\)is collinear with \(\vec d\), so
\(\vec a + \vec b + \vec c\;\; = \lambda \vec d\) …………. (1)
Also \(\vec b + \vec c + \;\vec d\;\) is collinear with \(\vec a,\) so
\(\vec b + \vec c + \;\vec
d\; = \mu \vec a\) …………….(2)
From equation (1) – equation (2),
\(\vec a - \vec d = \lambda \vec d - \mu \vec a\)
By comparison, \(\lambda = - 1,\;\,\mu = - 1\;\)
Putting the value of \(\lambda \) in equation (1), we have,
\(\vec a + \vec b + \vec c = - \vec d\)
\( \Rightarrow \vec a + \vec b + \vec c + \vec d = 0\)
Question 33: Forces of magnitude 5, 3, 1 units act in the directions 6i + 2j + 3k, 3i – 2j + 6k, 2i – 3j – 6k respectively on a particle which is displaced from the point (2, – 1, – 3) to (5, – 1, 1). The total work
done by the force is
(a) 21 units
(b) 5 units
(c) 33 units
(d) 105 units
33 units
Three forces are:
\({f_1} = 5\left( {\frac{{6i + 2j + 3k}}{{\sqrt {{6^2} + {2^2} + {3^2}} }}} \right) = \frac{5}{7}\left( {6i + 2j + 3k} \right)\)
\({f_2} = 3\left( {\frac{{3i - 2j + 6k}}{{\sqrt {{3^2} + {{( - 2)}^2} + {6^2}} }}} \right)
= \frac{3}{7}\left( {3i - 2j + 6k} \right)\)
\({f_3} = \left( {\frac{{2i - 3j - 6k}}{{\sqrt {{2^2} + {{( - 3)}^2} + {{( - 6)}^2}} }}} \right) = \frac{1}{7}\left( {2i - 3j - 6k} \right)\)
Net force \(f = \left( {\frac{{41i + i + 27k}}{7}}
\right)\)
Displacement = \(\vec d = (3i + 4k)\)
Work done = \(f \cdot d = \frac{{123 + 108}}{7} = 33\)
Question 34: The position vectors of points A and B are \(\vec a\) and \(\vec b\) . Then the position vector of point P dividing AB in the ratio \(m:n\) is
(a) \(\frac{{n\vec a + m\vec b}}{{m + n}}\)
(b) \(\frac{{n\vec
a + m\vec b}}{{m - n}}\)
(c) \(\frac{{n\vec a - m\vec b}}{{m + n}}\)
(d) None of these
\(\frac{{n\vec a + m\vec b}}{{m + n}}\)
This is a direct formula. Position vector of the point \(p\) is \(\frac{{n\vec a + m\vec b}}{{m + n}}\).
Question 35: If \(\vec a,\vec b,\vec c\;\) are three non-zero vectors with no two of which are \(\vec a + 2\vec b\;\;\)is collinear with \(\vec c\) and \(\vec b + \overrightarrow {3c} \;\) is collinear with \(\vec
a,\) then \(\left| {\vec a + 2\vec b + 6\vec c} \right|\) will be equal to
(a) 0
(b) 9
(c) 1
(d) None of above
0
Given that \(\vec a + 2\vec b\;\;\)is collinear with \(\vec c\)
\( \Rightarrow \vec a + 2\vec b = \lambda \vec c\) …….. (1)
Also \(\vec b + \overrightarrow {3c} \;\) is collinear with \(\vec a,\)
\( \Rightarrow \vec b + 3\vec c =
\mu \vec a\) …….. (2)
Equating the value of \(2\vec b\) from the above two equations, we have
\(\lambda \vec c - \vec a = 2\mu \vec a - 6\vec c\)
By comparison, we have \(\lambda = - 6\). Putting this value in the first equation,
we have
\(\vec a + 2\vec b = - 6\vec c\)
Or \(\left| {\vec a + 2\vec b + 6\vec c} \right| = 0\)
Question 36: Vertices of the vectors i – 2j + 2k, 2i + j – k and 3i – j + 2k form a triangle. This triangle is
(a) Equilateral triangle
(b) Right angle triangle
(c) Two sides are equal in length
(d) None of the above
Right angle triangle
Suppose the vertices are A, B and C, then
AB = \(i - 3j - 3k\)
BC = \(2i + j\)
CA = \(i - 2j + 3k\)
Here \({\rm{BC}} \cdot {\rm{AC}} = 2 - 2 = 0\)
Hence the triangle is right angled.
Question 37: If the volume of a parallelepiped whose adjacent edges are \(\vec a = 2i + 3j + 4k,\;\,\vec b = i + \alpha
j + 2k,\;\,\vec c = i + 2j + \alpha k\) is 15, then \(\alpha \) is:
(a) 1
(b) 5/2
(c) 9/2
(d) 0
9/2
Volume = \(\left| {\begin{array}{*{20}{c}}2&3&4\\1&\alpha &2\\1&2&\alpha \end{array}} \right| = 15\)
\( \Rightarrow 2({\alpha ^2} - 4) - 3(\alpha - 2) + 4(2 - \alpha ) = 15\)
\( \Rightarrow 2{\alpha ^2} - 7\alpha
- 9 = 0\)
\( \Rightarrow (\alpha + 1)(2\alpha - 9) = 0\)
Hence \(\alpha = - 1,\;\frac{9}{2}\)
Question 38: Solve the equation \({\sin ^2}x - \sin x - 2 = 0\) for \(x\) on the interval \(0 \le x \le 2\pi \)
(a) \(x = - \frac{\pi }{2}\) only
(b) \(x = \frac{\pi }{4}\;\;{\rm{and}}\;\frac{{2\pi }}{7}\)
(c) \(x = \frac{{2\pi }}{3}\;\;{\rm{and}}\;\frac{{2\pi }}{5}\)
(d) None of these
None of these
Given that \({\sin ^2}x - \sin x - 2 = 0\)
\( \Rightarrow (\sin x - 2)(\sin x + 1) = 0\)
\( \Rightarrow \sin x = - 1\)
Hence \(x = \frac{{3\pi }}{2}\)
Question 39: If \(\frac{{\tan x}}{2} = \frac{{\tan y}}{3} = \frac{{\tan z}}{5}\;\)and \(x + y + z = \pi \), then the value of \({\tan ^2}x + {\tan ^2}y + {\tan ^2}z\)
(a) 38/3
(b) 38
(c) 114
(d) None
of these
38/3
Let \(\tan x = 2k,\;\tan y = 3k,\;\tan z = 5k\)
We know that when \(x + y + z = \pi \),
\(\tan x + \tan y + \tan z = \tan x\tan y\tan z\)
\( \Rightarrow 2k + 3k + 5k = (2k)(3k)(5k)\)
\( \Rightarrow 10k = 30{k^3}\) or \({k^2} =
\frac{1}{3}\)
Hence \({\tan ^2}x + {\tan ^2}y + {\tan ^2}z = 4{k^2} + 9{k^2} + 25{k^2}\)
\( = 38{k^2} = \frac{{38}}{3}\)
Question 40: Find the value of sin 12°sin 48°sin 54°:
(a) 1/8
(b) 1/6
(c) 1/2
(d) 1/4
1/8
Multiply and divide by \(\sin 72\), we get
\(\frac{{\sin 12\sin 48\sin 72\sin 54}}{{\sin 72}}\)
\( = \frac{{\sin 36\sin 54}}{{4\sin 72}}\)
(using \(\sin \theta \sin (60 - \theta )\sin (60 + \theta ) = \frac{{\sin 3\theta }}{4}\))
\(\)\(
= \frac{{2\sin 36\sin 54}}{{8\sin 72}} = \frac{{2\sin 36\cos 36}}{{8\sin 72}} = \frac{1}{8}\)
Question 41: If cos x = tan y, cot y = tan z and cot z = tan x, then sin x is:
(a) \(\frac{{\sqrt 5 + 1}}{2}\)
(b) \(\frac{{\sqrt 5 - 1}}{2}\)
(c) \(\frac{{\sqrt 5 + 1}}{4}\)
(d) \(\frac{{\sqrt 5 - 1}}{4}\)
\(\frac{{\sqrt 5 - 1}}{2}\)
Eliminating \(y\) from the given relations,
\(\cos x = \tan y = \frac{1}{{\cot y}} = \frac{1}{{\tan z}} = \cot z = \tan x\)
\( \Rightarrow \cos x = \tan x\)
Or \(\sin x = {\cos ^2}x = 1 - {\sin ^2}x\)
\(\Rightarrow \sin x = \frac{{
- 1 + \sqrt 5 }}{2}\)
Question 42: The value of \(\tan \left( {45 + \frac{A}{2}} \right)\) is
(a) cot θ – sec θ
(b) cot θ + sec θ
(c) tan θ – sec θ
(d) tan θ + sec θ
tan θ + sec θ
\(\tan \left( {45 + \frac{\theta }{2}} \right) = \frac{{1 + \tan \frac{\theta }{2}}}{{1 - \tan \frac{\theta }{2}}}\)
\( = \frac{{\sin \frac{\theta }{2} + \cos \frac{\theta }{2}}}{{\cos \frac{\theta }{2} - \sin \frac{\theta }{2}}} = \frac{{{{\left(
{\sin \frac{\theta }{2} + \cos \frac{\theta }{2}} \right)}^2}}}{{{{\cos }^2}\frac{\theta }{2} - {{\sin }^2}\frac{\theta }{2}}}\)
\( = \frac{{1 + \sin \theta }}{{\cos \theta }} = \sec \theta + \tan \theta \)
Question 43: The value of \(\sin {10^ \circ }\sin {50^ \circ }\sin {70^ \circ }\) is :
(a) \(\frac{1}{4}\)
(b) \(\frac{1}{2}\)
(c) \(\frac{3}{4}\)
(d) \(\frac{1}{8}\)
\(\frac{1}{8}\)
The value of \(\sin 10\sin 50\sin 70\) \( = \frac{{\sin (3 \times 10)}}{4} = \frac{1}{8}\)
(using \(\sin \theta \sin (60 - \theta )\sin (60 + \theta ) = \frac{{\sin 3\theta }}{4}\))
(a) sin A cos A + 1
(b) sec A cosec A + 1
(c) tan A + cot A
(d) sec A + cosec A
sec A cosec A + 1
The given expression is:
\(\frac{{\frac{{\sin x}}{{\cos x}}}}{{\,1 - \frac{{\cos x}}{{\sin x}}\,}} + \frac{{\frac{{\cos x}}{{\sin x}}}}{{\,1 - \frac{{\sin x}}{{\cos x}}\,}}\)
\( = \frac{{{{\sin }^2}x}}{{\cos x\,(\sin x - \cos x)}} + \frac{{{{\cos
}^2}x}}{{\sin x\,(\cos x - \sin x)}}\)
\( = \frac{{{{\sin }^3}x - {{\cos }^3}x}}{{\sin x\cos x(\sin x - \cos x)}}\)
\( = \frac{{(\sin x - \cos x)({{\sin }^2}x + {{\cos }^2}x + \sin x\cos x)}}{{\sin x\cos x(\sin x - \cos x)}}\)
\( = 1 + \sec x{\rm{cosec}}x\)
Question 45: Angle of elevation of the top of the tower from 3 points (collinear) A, B and C on a road leading to the foot of the tower are 30°, 45° and 60°, respectively. The ratio of AB and BC is
(a) \(\sqrt
3 :1\)
(b) \(\sqrt 3 :2\)
(c) \(1:2\)
(d) \(2:\sqrt 3 \)
\(\sqrt 3 :1\)
Let the tower is PQ, and its height is \(h\), then
\(AQ = h\sqrt 3 \)
\(BQ = h\)
\(CQ = \frac{h}{{\sqrt 3
}}\)
\( \Rightarrow \frac{{AB}}{{BC}} = \frac{{h\sqrt 3 - h}}{{h - \frac{h}{{\sqrt 3 }}}} = \frac{{3 - \sqrt 3 }}{{\sqrt 3 - 1}} = \sqrt 3 \)
Question 46: The area enclosed between the curves \({y^2} = x\) and \(y = \left| x \right|\) is
(a) 2/3 sq. unit
(b) 1 sq. unit
(c) 1/6 sq. unit
(d) 1/3 sq. Unit
1/6 sq. unit
The graphs will intersect at the points (1, 1) and (0, 0)
Shaded area = \(\int\limits_0^1 {\left(
{\sqrt x - x} \right)} \,dx = \left[ {\frac{{{x^{2/3}}}}{{2/3}} - \frac{{{x^2}}}{2}} \right]_0^1\)
\( = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}\)
Question 47: Test the continuity of the function at \(x = 2\) \(f(x) = \left\{ {\begin{array}{left{20}{c}}{\frac{5}{2} - x,}&{x < 2}\\{1,}&{x = 2}\\{x - \frac{3}{2},}&{x > 2}\end{array}} \right.\)
(a) Continuous at \(x = 2\)
(b) Discontinuous at \(x = 2\)
(c) Semi continuous at \(x = 2\)
(d) None of the above
Discontinuous at \(x = 2\)
The function is discontinuous at \(x = 2\)
Question 48: The value of \(2{\tan ^{ - 1}}\left[ {{\rm{cosec}}({{\tan }^{ - 1}}x) - \tan ({{\cot }^{ - 1}}x)} \right]\) is:
(a) tanx
(b) cotx
(c) tan⁻¹x
(d) cosec⁻¹x
tan⁻¹x
The given expression can be written as
\(2{\tan ^{ - 1}}\left[ {{\rm{cosec}}\left( {{\rm{cose}}{{\rm{c}}^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}} }}{x}} \right)} \right)} \right]\) \( - \tan \left( {{{\tan }^{ - 1}}\left( {\frac{1}{x}} \right)}
\right)\)
\( = 2{\tan ^{ - 1}}\left[ {\frac{{\sqrt {1 + {x^2}} }}{x} - \frac{1}{x}} \right] = 2{\tan ^{ - 1}}\left[ {\frac{{\sqrt {1 + {x^2}} - 1}}{x}} \right]\)
Put \(x = \tan \theta \),
\( = 2{\tan ^{ - 1}}\left[ {\frac{{\sec \theta
- 1}}{{\tan \theta }}} \right] = 2{\tan ^{ - 1}}\left( {\frac{{1 - \cos \theta }}{{\sin \theta }}} \right)\)
\( = 2{\tan ^{ - 1}}\left( {\frac{{2{{\sin }^2}\frac{\theta }{2}}}{{2\sin \frac{\theta }{2}\cos \frac{\theta }{2}}}} \right) =
2{\tan ^{ - 1}}\left( {\tan \frac{\theta }{2}} \right)\)
\( = \theta = {\tan ^{ - 1}}x\)
Question 49: If \(3\sin x + 4\cos x = 5\), then \(6\tan \frac{x}{2} - 9{\tan ^2}\frac{x}{2}\) is:
(a) 1
(b) 3
(c) 4
(d) 6
1
Given that \(\frac{3}{5}\sin x + \frac{4}{5}\cos x = 1\)
Since \({\sin ^2}x + {\cos ^2}x = 1\), so \(\sin x = \frac{3}{4},\;\cos x = \frac{4}{5}\)
\( \Rightarrow \frac{{1 - {{\tan }^2}\frac{x}{2}}}{{1 - {{\tan }^2}\frac{x}{2}}} = \frac{4}{5}\)
or \(\tan \frac{x}{2} = \frac{1}{3}\)
\( \Rightarrow 6\tan \frac{x}{2} - 9{\tan ^2}\frac{x}{2} = \frac{6}{3} - \frac{9}{9} = 1\).
Question 50: If A is a subset of B and B is a subset of C, then cardinality of \({\rm{A}} \cup {\rm{B}} \cup {\rm{C}}\) is equal to:
(a) Cardinality of C
(b) Cardinality of B
(c) Cardinality of A
(d)
None of the above
Cardinality of A
Given that B and C are both subsets of \(A\) , hence \({\rm{A}} \cup {\rm{B}} \cup {\rm{C}} = A\). So, cardinality will be same as that of \(A\).