NIMCET 2022 Question Paper and Solutions
Prepare for NIMCET with Past Year Papers. Boost your MCA entrance preparation with the NIMCET 2022 Question Paper and Solutions. Practice these past papers to understand the exam pattern, key topics, and question types. Detailed solutions are provided to help you strengthen concepts and improve problem-solving skills. Perfect for cracking the NIMCET exam and securing a top rank!
NIMCET 2022 QUESTION PAPER AND SOLUTION
Question 01: The eccentricity of an ellipse, with its center at the origin is \(\tfrac{1}{3}\). If one of the directrices is \(x = 9\), then the equation of ellipse is:
[a] \(9{x^2} + 8{y^2} = 72\)[b] \(8{x^2} + 9{y^2} = 72\)
[c] \(8{x^2} + 7{y^2} = 56\)
[d] \(7{x^2} + 8{y^2} = 56\)
We know that eccentricity, \({e^2} = 1 - \frac{{{b^2}}}{{{a^2}}}\)\( \Rightarrow 1 - \frac{{{b^2}}}{{{a^2}}} = \frac{1}{9}\) or \(\frac{{{b^2}}}{{{a^2}}} = \frac{8}{9}\)
Also equation of directrix is given by \(x = \pm \frac{a}{e} = \pm 3a\).
Given that one of the directrices is \(x = 9\), hence \(a = 3\) and \({b^2} = 8\).
Equation of the ellipse is \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{8} = 1\)
Question 02: Angles of elevation of the top of a tower from three points (collinear) A, B and C on a road leading to the foot of the tower are 30°. 45° and 60° respectively. The ratio of AB and BC is
[a] \(\sqrt 3 :1\)[b] \(\sqrt 3 :2\)
[c] 1:2
[d] 2: \(\sqrt 3 \)
Suppose the tower is DE of height \(h\), where D point is on the ground, then
\(AD = \frac{h}{{\tan 30}} = h\sqrt 3 \)
\(BD = \frac{h}{{\tan 45}} = h\)
\(CD = \frac{h}{{\tan 60}} = \frac{h}{{\sqrt 3 }}\)
The ratio \(\frac{{AB}}{{BC}}
= \frac{{h\sqrt 3 - h}}{{h - \frac{h}{{\sqrt 3 }}}} = \frac{{\sqrt 3 }}{1}\)
Question 03: The first three moments of a distribution about 2 are 1, 16, – 40 respectively. Then mean and variance of the distribution are
[a] \((2,16)\)[b] \((2,15)\)
[c] \((3,15)\)
[d] \((1,16)\)
We know that, \(\frac{{\sum X }}{N} = \mu \;{\rm{(mean)}}\) and \({\sigma ^2} = \frac{1}{N}\sum {{X^2}} - {\mu ^2}\)
The \({n^{{\rm{th}}}}\)moment about a number \(m\) is defined as
\(\frac{1}{N}\sum\limits_{i = 1}^N {{{(X - m)}^k}} \)
Hence first moment about 2 is \(\frac{1}{N}\sum\limits_{i = 1}^N {(X - 2)} = \frac{1}{N}\sum {X - 2} \)\( = \mu \; - 2\)
Given that \(\mu - 2 = 1 \Rightarrow \mu = 3\)
Sirst moment about 2 is \(\frac{1}{N}\sum\limits_{i = 1}^N
{{{(X - 2)}^2}} = \frac{1}{N}\sum {({X^2} - 4X + 4)} \)
\( = \frac{1}{N}\sum {{X^2} - \frac{4}{N}\sum X } + 4\)
\( = {\sigma ^2} + {\mu ^2} - 4\mu + 4 = {\sigma ^2} + 1\)
Given that second moment about 2 is 16, hence \({\sigma
^2} = 15\)
Question 04: The value of \(\int {\frac{{\left( {{x^2} - 1} \right)dx}}{{{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}} \) is
[a] \(2\sqrt {2 - \frac{2}{{{x^2}}} + \frac{1}{{{x^4}}}} + c\)[b] \(2\sqrt {2 + \frac{2}{{{x^2}}} + \frac{1}{{{x^4}}}} + c\)
[c] \(\frac{1}{2}\sqrt {2 - \frac{2}{{{x^2}}} + \frac{1}{{{x^4}}}} + c\)
[d] None of the above
The integration can be written as, \(\smallint \;\frac{{\left( {{x^2} - 1} \right)dx}}{{{x^5}\sqrt {2 - \frac{2}{{{x^2}}} + \frac{1}{{{x^4}}}} }}\)= \(\smallint \;\frac{{\left( {\frac{1}{{{x^3}}} - \frac{1}{{{x^5}}}} \right)dx}}{{\sqrt 2 - \frac{2}{{{x^2}}}
+ \frac{1}{{{x^4}}}}}\)
Now put \(2 - \frac{2}{{{x^2}}} + \frac{1}{{{x^4}}} = t\)\( \Rightarrow \left( {\frac{4}{{{x^3}}} - \frac{4}{{{x^5}}}} \right)dx = dt\)
Or \(\left( {\frac{1}{{{x^3}}} - \frac{1}{{{x^5}}}} \right)dx = \frac{{dt}}{4}\)
The
integration becomes as, \(\smallint \;\frac{1}{4}\frac{{dt}}{{\sqrt t }}\)= \(\frac{1}{2}\sqrt t + c\)\( = \frac{1}{2}\sqrt {2 - \frac{2}{{{x^2}}} + \frac{1}{{{x^4}}}} + C\)
Question 05: If \(a < b\), then \(\int_a^b {(|x - a| + |x - b|)} dx\) is equal to
[a] \(\frac{{{{(b - a)}^2}}}{2}\)[b] \(\frac{{\left( {{b^2} - {a^2}} \right)}}{2}\)
[c] \(\frac{{\left( {{a^3} - {b^3}} \right)}}{2}\)
[d] \({(b - a)^2}\)
Given Integration is \(\int_a^b | x - a|dx + \int_a^b | x - b|dx\)
\( = \int_a^b {(x - a)} dx + \int_a^b \mid - (x - b)dx = \frac{{{x^2}}}{2} - \left. {ax} \right|_a^b + bx - \left. {\frac{{{x^2}}}{2}} \right|_a^b\)
\( = \frac{{{b^2}}}{2}
- ab - \left( {\frac{{{a^2}}}{2} - {a^2}} \right) + {b^2} - \frac{{{b^2}}}{2} - ab + \frac{{{a^2}}}{2}\)
\( = {a^2} + {b^2} - 2ab = {(b - a)^2}\)
Question 06: If \(\alpha ,\beta \) are the roots of \({x^2} - x - 1 = 0\), and \({A_n} = {\alpha ^n} + {\beta ^n}\), then Arithmetic Mean of \({A_{n - 1}}\) and \({A_n}\) is
[a] \(2\;{{\rm{A}}_{\rm{n}}} - 1\)[b] \(\frac{1}{2}{A_{n + 1}}\)
[c] \(2\;{{\rm{A}}_{\rm{n}}} - 2\)
[d] none of the above
Let us find the value of \({A_{n + 1}}\),
\({\alpha ^{n + 1}} + {\beta ^{n + 1}} = (\alpha + \beta )({\alpha ^n} + {\beta ^n})\)
\(- \alpha \beta ({\alpha ^{n - 1}} + {\beta ^{n - 1}})\)
\( \Rightarrow {A_{n + 1}} = 1 \times {A_n}
+ {A_{n - 1}}\)
Hence \(\frac{{{A_n} + {A_{n - 1}}}}{2} = \frac{{{A_{n + 1}}}}{2}\)
Question 07: Suppose that the temperature at a point \((x,y)\) on a metal plate is \({\rm{T}}(x,y) = 4{x^2} - 4xy + {y^2}\). An ant, walking on the plate, traverses a circle of radius 5 centered at the origin. What is the highest temperature encountered by the ant?
[a] 125[b] 120
[c] 0
[d] 25
The temperature function, \({\rm{T}}(x,y) = 4{x^2} - 4xy + {y^2} = {(2x - y)^2}\)
Given that the ant traverses the circle of radius 5 and center at origin, so we have to maximize the function \(2x - y\), that satisfies the condition \({x^2}
+ {y^2} = 25\).
Let the \(2x - y = k\), then \(k\) will be the maximum when the line \(2x - y = k\) touches the circle.
\( \Rightarrow {k^2} = 25(1 + {2^2}) = 125\) [using \({c^2} = {a^2}(1 + {m^2})\)]
Question 08: The mean of 25 observations was found to be 38. It was later discovered that 23 and 38 were misread as 25 and 36, then the mean is
[a] 32[b] 36
[c] 38
[d] 42
Given mean of 25 numbers is 38, also two numbers 25, 34 are misread as 23 and 36.
Hence corrected mean
\(= \frac{{\left\{ {\left( {25 \times 38} \right) - \left( {23 + 36} \right)} \right\} + \left( {25 + 34} \right)}}{{25}} = 38\)
Note
that sum of 25, 34 is same as 23, 36, hence there will be no change in the mean.
Question 09: If the foci of the ellipse \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{{b^2}}} = 1\) and the hyperbola \(\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}\) coincide, then the value of \({b^2}\) is
[a] 25[b] 16
[c] 9
[d] 49
Eccentricity of the hyperbola is \(\sqrt {1 + \frac{{{b^2}}}{{{a^2}}}} = \sqrt {1 + \frac{{81/25}}{{144/25}}} = \frac{{15}}{{12}} = \frac{5}{4}\)
Hence its focus is \((ae,\,\,0) = \left( {\frac{{12}}{5} \times \frac{5}{4},\;0} \right) = (3,\,0)\)
Given that focus of the ellipse is also same, suppose eccentricity of the ellipse is \(e'\), then
\(5e' = 3 \Rightarrow e' = \frac{3}{5}\)
\( \Rightarrow \sqrt {1 - \frac{{{b^2}}}{{25}}} = \frac{3}{5} \Rightarrow {b^2} = 16\)
Question 10: If the angle of elevation of the top of a hill from each of the vertices A, B and C of a horizontal triangle is \(\alpha \), then the height of the hill is
[a] \(\frac{1}{2}b\tan \alpha \sec B\)[b] \(\frac{1}{2}b\tan \alpha {\mathop{\rm cosec}\nolimits} A\)
[c] \(\frac{1}{2}c\tan \alpha \sin C\)
[d] \(\frac{1}{2}a\tan \alpha {\mathop{\rm cosec}\nolimits} A\)
Since angle of elevation from the three vertices is same as \(\alpha \), the tower must be equidistant from the three vertices, and the tower is at the circumcenter of the triangle.
Distance of the circumcenter from any vertex = \(h\cot \alpha
= R\)(= circum-radius)
We know that \(\frac{{\sin A}}{a} = \frac{{\sin B}}{b} = \frac{{\sin C}}{c} = \frac{1}{{2R}}\)
\( \Rightarrow h\cot \alpha = \frac{a}{{2\sin A}}\) or \(h = \frac{a}{2}\tan \alpha \,{\rm{cosec}}\,A\)
Question 11: Let \(a\) be the distance between the lines \( - 2x + y = 2\) and \(2x - y = 2\), and \(b\) be the distance between the lines \(4x - 3y = 5\) and \(6y - 8x = 1\), then
[a] \(40b = 11\sqrt 5 a\)[b] \(40\sqrt 2 a = 11b\)
[c] \(11\sqrt 2 b = 40a\)
[d] \(11\sqrt 2 a = 40b\)
The first two lines can be written as \(2x - y + 2 = 0,\;\,2x - y - 2 = 0\), distance between them is
\(a = \frac{{2 - ( - 2)}}{{\sqrt {{2^2} + {1^2}} }} = \frac{4}{{\sqrt 5 }}\)
The next two lines can be written as \(4x - 3y - 5 = 0,\;4x
- 3y + \frac{1}{2} = 0\), distance between them is
\(b = \frac{{\left| { - 5 - \frac{1}{2}} \right|}}{{\sqrt {{4^2} + {3^2}} }} = \frac{{11}}{{10}}\)
Hence \(\frac{a}{b} = \frac{{\frac{4}{{\,\sqrt 5 \,}}}}{{\frac{{11}}{{10}}}} = \frac{{40}}{{11\sqrt
5 }}\), or \(11\sqrt 5 \,a = 40b\)
Question 12: If \({\mathop{\rm cosec}\nolimits} \theta - \cot \theta = 2\), then the value of \({\mathop{\rm cosec}\nolimits} \theta \) is
[a] \(\frac{5}{3}\)[b] \(\frac{3}{5}\)
[c] \(\frac{4}{5}\)
[d] \(\frac{5}{4}\)
Since \({\rm{cose}}{{\rm{c}}^2}\theta - {\cot ^2}\theta = 1 \Rightarrow {\rm{cosec}}\theta - \cot \theta = \frac{1}{{{\rm{cosec}}\theta + \cot \theta }}\)
Hence \({\rm{cosec}}\,\theta - \cot \theta = \frac{1}{2}\)
As we are given that \({\mathop{\rm
cosec}\nolimits} \theta - \cot \theta = 2\),
Adding the two equations, we have
\(2{\rm{cosec}}\,\theta = 2 + \frac{1}{2} \Rightarrow {\rm{cosec}}\,\theta = \frac{5}{4}\)
Question 13: The function \(f(x) = \log \left( {x + \sqrt {{x^2} + 1} } \right)\) is
[a] an even function[b] an odd function
[c] a periodic function
[d] neither an even nor an odd function
Given that \(f\left( x \right) = {\rm{log}}\left( {x + \sqrt {{x^2} + 1} } \right)\)
\(f( - x) = {\rm{log}}\left( { - x + \sqrt {{{( - x)}^2} + 1} } \right)\)
Adding both the functions, we have
\(f(x) + f( - x) \)
\(= \log \left[ {\left(
{x + \sqrt {1 + {x^2}} } \right)\left( { - x + \sqrt {1 + {x^2}} } \right)} \right]\)
\( = \log ( - {x^2} + (1 + {x^2})] = \log 1 = 0\)
\( \Rightarrow f( - x) = - f(x)\) and thus it is an odd function.
Question 14: Inverse of the function \(f(x) = \frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}}\) is
[a] \({\log _{10}}(2 - x)\)[b] \(\frac{1}{2}{\log _{10}}\left( {\frac{{1 + x}}{{1 - x}}} \right)\)
[c] \(\frac{1}{2}{\log _{10}}(2x - 1)\)
[d] \(\frac{1}{4}{\log _{10}}\left( {\frac{{2x}}{{2 - x}}} \right)\)
The given function is,\(f(x) = \frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}}\), let’s assume \(f(x) = y\) and solve the equation for \(x\),
\(y = \frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}}\) or \(y = \frac{{{{10}^{2x}}
- 1}}{{{{10}^{2x}} + 1}}\)
\( \Rightarrow \left( {{{10}^{2x}} + 1} \right)y = {10^{2x}} - 1\)
\( \Rightarrow {10^{2x}} = \frac{{1 + y}}{{1 - y}}\)
Take log, \(2x = \log \left( {\frac{{1 + y}}{{1 - y}}} \right)\) or \(x = \frac{1}{2}\log
\left( {\frac{{1 + y}}{{1 - y}}} \right)\)
Replace \(y\) to \(x\) and \(x\) to \({f^{ - 1}}(x)\)
\({f^{ - 1}}(x) = \frac{1}{2}\log \left( {\frac{{1 + x}}{{1 - x}}} \right)\)
Question 15: If \((\hat a \times \hat b) \times \hat c = \hat a \times (\hat b \times \hat c)\), then
[a] \(\hat a\) and \(\hat b\) are collinear[b] \(\hat a\) and \(\hat b\) are perpendicular
[c] \(\hat a\) and \(\hat c\) are collinear
[d] \(\hat a\) and \(\hat c\) are perpendicular
Expand the triple product,
\((a \cdot c)b - (b.c)a = (a.c)b - (a.b)c\)
\( \Rightarrow (b.c)a = (a.b)c\)
As \(b.c\) and \(a.b\) are scalar quantities, hence \(a\) and \(c\)are collinear vectors.
Question 16: In a Harmonic Progression, \({p^{{\rm{th }}}}\) term is \(q\) and the \({q^{{\rm{th }}}}\) term is \(p\). Then \(p{q^{{\rm{th }}}}\) term is
[a] 0[b] 1
[c] \({\rm{pq}}\)
[d] \({\rm{pq}}({\rm{p}} + {\rm{q}})\)
In the equivalent Arithmetic Series,
\(\frac{1}{p} = a + \left( {q - 1} \right)d \Rightarrow 1 = ap + \left( {q - 1} \right)dp\)
\(\frac{1}{q} = a + \left( {p - 1} \right)d \Rightarrow 1 = aq + \left( {p - 1} \right)dq\)
\( \Rightarrow
ap + \left( {q - 1} \right)dp = aq + \left( {p - 1} \right)dq\)
Or \(a\left( {p - q} \right) = \left( {p - q} \right)d \Rightarrow a = d\)
Putting \(a = d\) in the first equation, we get \(d = a = \frac{1}{{pq}}\)
\(p{q^{{\rm{th}}}}\)
term of AP, is \(a + (pq - 1)d = d + (pq - 1)d = pqd = 1\)
Question 17: Which term of the series \(\frac{{\sqrt 5 }}{3},\frac{{\sqrt 5 }}{4},\frac{1}{{\sqrt 5 }}, \ldots \ldots \) is \(\frac{{\sqrt 5 }}{{13}}\) ?
[a] 12[b] 11
[c] 10
[d] 9
The given series is: \(\sqrt 5 \left( {\frac{1}{3},\frac{1}{4},\frac{1}{5}, \ldots \ldots } \right)\)
Hence \(\frac{1}{{\sqrt 5 }}(3,4,5, \ldots \ldots ){\rm{ }}\)are in AP. Suppose the \(\frac{{13}}{{\sqrt 5 }}\) is the \({n^{{\rm{th}}}}\)term,
then
\(\frac{{13}}{{\sqrt 5 }} = \frac{1}{{\sqrt 5 }}\left[ {3 + (n - 1) \times 1} \right]\)\( \Rightarrow n = 11\)
Question 18: Solutions of the equation \({\tan ^{ - 1}}\sqrt {{x^2} + x} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}\) are
[a] 0,1[b] \(1, - 1\)
[c] \(0, - 1\)
[d] \(0, - 2\)
Given equation can be written as, \({\tan ^{ - 1}}\sqrt {{x^2} + x} = \frac{\pi }{2} - {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} \)
\( \Rightarrow {\tan ^{ - 1}}\sqrt {{x^2} + x} = {\cos ^{ - 1}}\sqrt {{x^2} + x + 1} \)
\( \Rightarrow {\cos ^{
- 1}}\frac{1}{{\sqrt {{x^2} + x + 1} }} = {\cos ^{ - 1}}\sqrt {{x^2} + x + 1} \) as \({\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\frac{1}{{\sqrt {1 + {x^2}} }}} \right)\)
\( \Rightarrow \frac{1}{{\sqrt {{x^2} + x + 1} }} = \sqrt {{x^2} + x
+ 1} \)
Hence \({x^2} + x + 1 = 1 \Rightarrow x = 0,\; - 1\)
Question 19: The domain of the function \(f(x) = \frac{{{{\cos }^{ - 1}}x}}{{[x]}}\) is
[a] \([ - 1,0) \cup \{ 1\} \)[b] \([ - 1,1]\)
[c] \([ - 1,1)\)
[d] None of the above
Domain of \({\cos ^{ - 1}}x\) is \( - 1 \le x \le 1\)
Also \([x] \ne 0\), so \(x\) cannot lie in the interval \([0,\;1)\)
Domain of the function is \([ - 1,\;0)\,\, \cup \,\,\{ 1\} \)
Question 20: There are two circles in xy-plane whose equations are \({x^2} + {y^2} - 2y = 0\) and \({x^2} + {y^2} - 2y - 3 = 0\). A point \((x,y)\) is chosen at random inside the larger circle. Then the probability that the point has been taken from smaller circle is
[a] \(1/3\)[b] \(2/3\)
[c] \(1/2\)
[d] \(1/4\)
Both the circles have the same centre (0, 0) and their radii are 1, 2. It is given that point lies in the bigger circle, then probability that it has been taken from the smaller circle is:
\(\frac{{{\rm{Area}}\;{\rm{of}}\;{\rm{the}}\;{\rm{smaller}}\;{\rm{circle}}}}{{{\rm{Area}}\;{\rm{of}}\;{\rm{the}}\;{\rm{bigger}}\;{\rm{circle}}}}
= \frac{{\pi {{(1)}^2}}}{{\pi {{(2)}^2}}} = \frac{1}{4}\)
Question 21: \(f(x) = x + |x|\) is continuous for
[a] \(x \in ( - \infty ,\infty )\)[b] \(x \in ( - \infty ,\infty ) - \{ 0\} \)
[c] only \(x > 0\)
[d] No value of \(x\)
Given that, \(f(x) = \left\{ {\begin{array}{*{20}{c}}{0,}&{x \le 0}\\{2x,}&{x > 0}\end{array}} \right.\)
Now we check continuity of the given function at \(x = 0\)
\({\rm{LHL }} = \mathop {\lim }\limits_{x \to 0} f(x) = \mathop
{\lim }\limits_{x \to 0} (0) = 0,\,\)
\(\,{\rm{RHL }} = \mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to 0} (2x) = 2 \times 0 = 0\)
And \(f(0) = 0,\;{\rm{ LHL}} = {\rm{RHL}} = f(0) = 0\)
Given function is
continuous at \(x = 0\)
Hence, given function is continuous in the interval \(( - \infty ,\infty )\)
Question 22: The correct expression for \({\cos ^{ - 1}}( - x)\) is
[a] \(\pi /2 - {\cos ^{ - 1}}x\)[b] \(\pi - {\cos ^{ - 1}}x\)
[c] \(\pi + {\cos ^{ - 1}}x\)
[d] \(\pi /2 + {\cos ^{ - 1}}x\)
It is a standard result that \({\cos ^{ - 1}}( - x) = \pi - {\cos ^{ - 1}}(x)\)
Question 23: If \(D = \left| {\begin{array}{*{20}{c}}1&1&1\\1&{2 + x}&1\\1&1&{2 + y}\end{array}} \right|\) for \(x \ne 0,y \ne 0\), then \(D\) is
[a] Divisible by \(x\) and \(y\)[b] Divisible by \(x\) but not by \(y\)
[c] Divisible by \((1 + x)\) and \((1 + y)\)
[d] Divisible by \((1 + x)\) but not \((1 + y)\)
The given determinant is, \(\left| {\begin{array}{*{20}{c}}1&1&1\\1&{2 + x}&1\\1&1&{2 + y}\end{array}} \right|\)
Using, \({{\rm{C}}_1} \to {{\rm{C}}_1} - {{\rm{C}}_2},{{\rm{C}}_2} \to {{\rm{C}}_2} - {{\rm{C}}_3}\)
\(\left|
{\begin{array}{*{20}{c}}0&0&1\\{ - (1 + x)}&{(1 + x)}&1\\0&{ - (1 + y)}&{2 + y}\end{array}} \right|\)
The value of the determinant is: \((1 + x)(1 + y)\), hence it is divisible by both \((1 + x)\) and \((1 + y)\)
Question 24: If the roots of the quadratic equation \({x^2} + px + q = 0\) are \(\tan {30^\circ }\) and \(\tan {15^\circ }\) respectively, then the value of \(2 + p - q\) is
[a] 3[b] 0
[c] 1
[d] 2
We know that \((1 + \tan \theta )\left( {1 + \tan (45 - \theta )} \right) = 2\), hence \((1 + \tan 30)(1 + \tan 15) = 2\), let us represent the roots by \(\alpha ,\;\beta \), then
\((1 + \alpha )(1 + \beta ) = 2 \Rightarrow 1 + \alpha + \beta
+ \alpha \beta = 2\)
Or \(\alpha \beta + \alpha + \beta - 1 = 0\)
\( \Rightarrow q - p - 1 = 0\) or \(p - q = - 1\)
Hence \(2 + p - q = 1\)
Question 25: The value of \({3^{3 - {{\log }_3}5}}\) is
[a] \(\frac{5}{{27}}\)[b] \(\frac{{27}}{5}\)
[c] \(\frac{9}{5}\)
[d] \(\frac{5}{9}\)
We know that \({a^{{{\log }_a}x}} = x\)
\({3^{3 - {{\log }_3}5}} = {3^3} \cdot {3^{ - {{\log }_3}5}} = {3^3} \cdot {3^{{{\log }_3}\left( {\frac{1}{5}} \right)}}\)
\( = 27 \cdot \left( {\frac{1}{5}} \right) = \frac{{27}}{5}\)
Question 26: If \({x^m}{y^n} = {(x + y)^{m + n}}\), then \(dy/dx\) is
[a] \(\frac{{x + y}}{{xy}}\)[b] \(xy\)
[c] \(\frac{x}{y}\)
[d] \(\frac{y}{x}\)
Taking Logarithm both the sides,
\(m\log x + n\log y = (m + n)\log (x + y)\)
\( \Rightarrow \frac{m}{x} + \frac{n}{y}\frac{{dy}}{{dx}} = \frac{{m + n}}{{x + y}}\left( {1 + \frac{{dy}}{{dx}}} \right)\)
\( \Rightarrow \frac{m}{x} - \frac{{m
+ n}}{{x + y}} = \left( {\frac{{m + n}}{{x + y}} - \frac{n}{y}} \right)\frac{{dy}}{{dx}}\)
\( \Rightarrow \frac{{my - nx}}{{x(x + y)}} = \left( {\frac{{my - nx}}{{y(x + y)}}} \right)\frac{{dy}}{{dx}}\)
Hence \(\frac{{dy}}{{dx}} = \frac{y}{x}\)
Question 27: There are two sets \({\rm{A}}\) and \({\rm{B}}\) with \(|{\rm{A}}| = m\) and \(|{\rm{B}}| = n\). If \(|{\rm{P}}({\rm{A}})| - |{\rm{P}}({\rm{B}})| = 112\) then choose the wrong option (where \(|{\rm{A}}|\) denotes the cardinality of \({\rm{A}}\), and \({\rm{P}}({\rm{A}})\) denotes the power set of \({\rm{A}}\)
[a] \(m + n = 11\)[b] \(2n - m = 1\)
[c] \(2m - n = 1\)
[d] \(3n - m = 5\)
Power set of \(A\) is \(P[A] = {2^m}\)
Power set of \(B\) is \(P[B] = {2^n}\)
\(P[A] - P[B] = 112\)
\({2^m} - {2^n} = 112\)
\({2^n}\left\{ {{2^{m - n}} - 1} \right\} = 16 \times 7\)
\({2^n}\left\{ {{2^{m - n}} - 1} \right\} = {2^4}
\times \{ 8 - 1\} \)
\({2^n}\left\{ {{2^{m - n}} - 1} \right\} = {2^4}\left\{ {{2^3} - 1} \right\}\)
\(n = 4{\rm{ and }}m - n = 3\) or \(m = 7\).
Hence third choice not correct.
Question 28: The solutions of the equation \(4{\cos ^2}x + 6{\sin ^2}x = 5\) are
[a] \(x = n\pi \pm \frac{\pi }{4}\)[b] \(x = n\pi \pm \frac{\pi }{3}\)
[c] \(x = n\pi \pm \frac{\pi }{2}\)
[d] \(x = n\pi \pm \frac{{2\pi }}{3}\)
\(4{\cos ^2}x + 6{\sin ^2}x = 5\)
\(4{\cos ^2}x + 4{\sin ^2}x + 2{\sin ^2}x = 5\)
\(4 + 2{\sin ^2}x = 5\)or \(2{\sin ^2}x = 1\)
\({\sin ^2}x = \frac{1}{2}\) or \({\sin ^2}x = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\)
\({\sin ^2}x
= {\sin ^2}\frac{\pi }{4}\)\( \Rightarrow x = n\pi \pm \frac{\pi }{4}\)
Question 29: If the volume of a parallelepiped whose adjacent edges are \(\vec a = 2\hat \imath + 3\hat \jmath + 4\hat k\), \(\vec b = \hat \imath + \alpha \hat \jmath + 2\hat k\) and \(\vec c = \hat \imath + 2\hat \jmath + \alpha \hat k\) is 15 , then \(\alpha \) is equal to
[a] 1[b] 3
[c] 9/2
[d] 0
Volume of parallelopiped is \( = \left[ {a\,b\,c} \right] = 15\)
\(\left| {\begin{array}{*{20}{l}}2&3&4\\1&\alpha &2\\1&2&\alpha \end{array}} \right| = 15\)
\( \Rightarrow 2\left( {{\alpha ^2} - 4} \right) - 3\left(
{\alpha - 2} \right) + 4(2 - \alpha ) = 15\)
Or \(2{\alpha ^2} - 7\alpha - 9 = 0\)
\( \Rightarrow (\alpha + 1)(2\alpha - 9) = 0\)
Hence \(\alpha = - 1,\;\frac{9}{2}\)
Question 30: Coordinate of focus of the parabola \(4{y^2} + 12x - 20y + 67 = 0\) is
[a] \(\left( { - \frac{5}{4},\frac{{17}}{2}} \right)\)[b] \(\left( { - \frac{{17}}{2},\frac{5}{4}} \right)\)
[c] \(\left( { - \frac{{17}}{4},\frac{5}{2}} \right)\)
[d] \(\left( { - \frac{5}{2},\frac{{17}}{4}} \right)\)
The given parabola is: \(4{y^2} - 12x - 20y + 67 = 0\)
\( \Rightarrow 4\left( {{y^2} - 5y} \right) = - 12x - 67\)
\( \Rightarrow 4\left[ {{{\left( {y - \frac{5}{2}} \right)}^2} - \frac{{25}}{4}} \right] = - 12x - 67\)
\( \Rightarrow
4{\left( {y - \frac{5}{2}} \right)^2} = - 12x - 42\)
\( \Rightarrow {\rm{\;}}{\left( {y - \frac{5}{2}} \right)^2} = - 3\left( {x + \frac{7}{2}} \right)\)
Assume \(y - \frac{5}{2} = Y,\;\;x + \frac{7}{2} = X\), so the focus is \(\left(
{ - \frac{3}{4},\;0} \right)\)
Hence \(x + \frac{7}{2} = - \frac{3}{4} \Rightarrow x = - \frac{{17}}{4}\) and \(y = \frac{5}{2}\)
(Note that it is clear after initial 3- 4 steps that y coordinate of the focus will be \(\frac{5}{2}\),
there is only one choice having \(\frac{5}{2}\) as \(y\) coordinate.)
Question 31: If \(0 < {\rm{P}}({\rm{A}}) < 1\) and \(0 < {\rm{P}}({\rm{B}}) < 1\), and \({\rm{P}}({\rm{A}} \cap {\rm{B}}) = {\rm{P}}({\rm{A}}){\rm{P}}({\rm{B}})\), then
[a] \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = {\rm{P}}({\rm{B}}) - {\rm{P}}({\rm{A}})\)[b] \( P\left( {{A^c} - {B^c}} \right) = P\left( {{A^c}} \right) - P\left( {{B^c}} \right)\)
[c] \( {\rm{P}}{({\rm{A}} \cup {\rm{B}})^{\rm{c}}} = {\rm{P}}\left( {{{\rm{A}}^c}} \right){\rm{P}}\left( {{{\rm{B}}^c}} \right)\)
[d] \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = {\rm{P}}({\rm{A}}) - {\rm{P}}({\rm{B}})\)
Given that \({\rm{P}}({\rm{A}} \cap {\rm{B}}) = {\rm{P}}({\rm{A}}){\rm{P}}({\rm{B}})\), hence events \(A\) and \(B\) are independent.
Using De Morgan's law
\(P{(A \cup B)^\prime } = P\left( {{A^\prime } \cap {B^\prime }} \right) = P\left(
{{A^\prime }} \right)P\left( {{B^\prime }} \right)\)
Question 32: If \({a_1},{a_2}, \ldots {a_{\rm{n}}}\) are any real numbers and \(n\) is any positive integer, then
[a] \(n\sum\limits_{i = 1}^n {a_i^2} < {\left( {\sum\limits_{i = 1}^n {{a_i}} } \right)^2}\)[b] \(n\sum\limits_{i = 1}^n {a_i^2} \ge {\left( {\sum\limits_{i = 1}^n {{a_i}} } \right)^2}\)
[c] \(\sum\limits_{i = 1}^n {a_i^2} \ge {\left( {\sum\limits_{i = 1}^n {{a_i}} } \right)^2}\)
[d] none of the above
This question can be solved using a set of numbers like 1, 2, 3 or 1, – 2, 3.
\(n\sum {a_i^2} = 3({1^2} + {2^2} + {3^2}) = 42\)
\({\left( {\sum {{a_i}} } \right)^2} = {(1 + 2 + 3)^2} = 36\)
We see that \(n\sum {a_i^2} \ge {\left( {\sum
{{a_i}} } \right)^2}\)
To prove it algebraically, let us take three numbers \(a,\;b,\;c\), we know that
\({(a - b)^2} + {(b - c)^2} + {(c - a)^2} \ge 0\)
\( \Rightarrow {a^2} + {b^2} + {c^2} \ge ab + bc + ca\) ….. (1)
Or \(2({a^2}
+ {b^2} + {c^2}) \ge 2(ab + bc + ca)\)
Adding \({a^2} + {b^2} + {c^2}\) both the sides, we have
\(3({a^2} + {b^2} + {c^2}) \ge {a^2} + {b^2} + {c^2} + 2(ab + bc + ca)\)
\( \Rightarrow 3({a^2} + {b^2} + {c^2}) \ge {(a + b + c)^2}\)
Question 33: The value of \(\cot \left( {{{{\mathop{\rm cosec}\nolimits} }^{ - 1}}\frac{5}{3} + {{\tan }^{ - 1}}\frac{2}{3}} \right)\) is
[a] 6/17[b] 3/17
[c] 4/17
[d] 5/17
As \(\cos {\sec ^{ - 1}}\frac{5}{3} = {\cot ^{ - 1}}\frac{4}{3}\), the given sum is:
\({\rm{cot}}\left[ {{\rm{ta}}{{\rm{n}}^{ - 1}}\frac{3}{4} + {\rm{ta}}{{\rm{n}}^{ - 1}}\frac{2}{3}} \right]\)
\( = {\rm{cot}}\left[ {{\rm{ta}}{{\rm{n}}^{
- 1}}\left[ {\frac{{3/4 + 2/3}}{{1 - \frac{3}{4} \cdot \frac{2}{3}}}} \right]} \right]\)
\( = {\rm{cot}}\left[ {{\rm{co}}{{\rm{t}}^{ - 1}}\left[ {\frac{6}{{17}}} \right]} \right] = \frac{6}{{17}}\)
Question 34: If \({a_1},{a_2} \ldots {a_n}\), are in Arithmetic Progression with common difference, \(d\), then the sum \(\sin d({\rm{cosec}}\,{a_1} \cdot {\mathop{\rm cosec}\nolimits} {a_2} + {\mathop{\rm cosec}\nolimits}
{a_2} \cdot {\mathop{\rm cosec}\nolimits} {a_3} + \)
\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ldots \ldots . + {\mathop{\rm cosec}\nolimits} {a_{n - 1}} \cdot {\mathop{\rm cosec}\nolimits} {a_n})\) is equal to
[a] \(\cot {a_1} - \cot {a_{\rm{n}}}\)
[b] \(\sin {a_1} - \sin {a_{\rm{n}}}\)
[c] \({\mathop{\rm Cosec}\nolimits} {a_1} - {\mathop{\rm cosec}\nolimits} {a_{\rm{n}}}\)
[d] \({a_1} - {a_{\rm{n}}}\)
\({a_1},{a_2}, \ldots \ldots ,{a_n}\) are in AP
Then, \({\rm{\;}}{a_2} - {a_1} = {a_3} - {a_2} = \ldots \ldots \ldots ..{a_n} - {a_{n - 1}} = d\)
\({\rm{sin}}\,d\left( {\frac{1}{{{\rm{sin}}{a_1} \cdot {\rm{sin}}{a_2}}} + \frac{1}{{{\rm{sin}}{a_2}
\cdot {\rm{sin}}{a_3}}} + \ldots . + \frac{1}{{{\rm{sin}}{a_{n - 1}} \cdot {\rm{sin}}{a_n}}}} \right)\)
= \(\left( {\frac{{{\rm{sin}}d}}{{{\rm{sin}}{a_1} \cdot {\rm{sin}}{a_2}}} + \frac{{{\rm{sin}}d}}{{{\rm{sin}}{a_2} \cdot {\rm{sin}}{a_3}}}
+ \ldots + \frac{{{\rm{sin}}d}}{{{\rm{sin}}{a_{n - 1}} \cdot {\rm{sin}}{a_n}}}} \right)\)
= \(\frac{{\left( {{\rm{sin}}{a_2}{\rm{cos}}{a_1} - {\rm{cos}}{a_2}{\rm{sin}}{a_1}} \right)}}{{{\rm{sin}}{a_1} \cdot {\rm{sin}}{a_2}}} + \frac{{{\rm{sin}}{a_3}{\rm{cos}}{a_2}
- {\rm{cos}}{a_3}{\rm{sin}}{a_2}}}{{{\rm{sin}}{a_2} \cdot {\rm{sin}}{a_3}}} + \ldots \)
= \({\rm{cot}}{a_1} - {\rm{cot}}{a_2} + {\rm{cot}}{a_2} - {\rm{cot}}{a_3} + \ldots + {\rm{cot}}{a_{n - 1}} - {\rm{cot}}{a_n}\)= \({\rm{cot}}{a_1} -
{\rm{cot}}{a_n}\)
Question 35: In a triangle A B C, if the tangent of half the difference of two angles is equal to one third of the tangent of half the sum of the angles, then the ratio of the sides opposite to the angles is
[a] 1 : 2[b] 2 : 1
[c] 3 : 1
[d] 1 : 1
It is given that
\({\rm{tan}}\frac{{A - B}}{2} = \frac{1}{3}{\rm{tan}}\frac{{A + B}}{2}{\rm{\; = }}\frac{1}{3}\cot \frac{C}{2}\) …. (1)
Using Napier's analogy, \(\tan \frac{{A - B}}{2} = \frac{{a - b}}{{a + b}}\cot \frac{C}{2}\)
From
(1),
\(\frac{{a - b}}{{a + b}}\cot \frac{C}{2} = \cot \frac{C}{2} \Rightarrow \frac{{a - b}}{{a + b}} = 1\)
Or \(a = 2b\) and the ratio \(a:b = 2:1\)
Question 36: Let \(\hat a = 2i + 2j + k\) and \(\hat b\) be another vector such that \(\hat a \cdot \hat b = 14\) and \(\hat a \times \hat b = 3i + \) \(j - 8k\) the vector \(\hat b = \)
[a] \(5i + j + 2k\)[b] \(5i - j - 2k\)
[c] \(5i + j - 2k\)
[d] \(3i + j + 4k\)
Let \(b = xi + yj + zk,\,\,a.b = 14\)
\( \Rightarrow 2x + 2y + z = 14\) … (1)
Only first choice [s]tisfies this condition.
We can solve the question in detail, using \(a \times b = 3i - j - 8k\)
\(a \times b = \left| {\begin{array}{*{20}{c}}i&j&k\\2&2&1\\x&y&z\end{array}}
\right| = (2z - y)i - (2z - x)j + (2z - 2x)k\)
Comparing this with the given product \(a \times b\), we have
\(2z - y = 3,\;\;2z - x = - 1,\;\;2z - 2x = - 8\)
Using equation (1), \(x = 5,\;y = 1,\;z = 2\)
Question 37: A particle is at rest at the origin. It moves along the \({\rm{x}}\)-axis with an acceleration \(x - {x^2}\), where \(x\) is the distance of the particle at time \(t\). The particle next comes to rest after it has covered a distance
[a] 1[b] \(\frac{1}{2}\)
[c] \(\frac{3}{2}\)
[d] 2
We know that velocity, \(v = \frac{{dx}}{{dt}}\) and acceleration \(a = \frac{{dv}}{{dt}} = \frac{{dv}}{{dx}}\frac{{dx}}{{dt}} = \frac{{dv}}{{dx}} \cdot v\)
Given that \(a = v \cdot \frac{{dv}}{{dx}} = x - {x^2}\)
\( \Rightarrow \int {vdv}
= \int {x - {x^2}} \,dx\)
\( \Rightarrow \frac{{{v^2}}}{2} = \frac{{{x^2}}}{2} - \frac{{{x^3}}}{3} + c\)
Since particle is at rest at origin, it means at \(x = 0\), \(v = 0\), therefore \(c = 0\).
Again the particle comes to rest
when \(\frac{{{x^2}}}{2} - \frac{{{x^3}}}{3} = 0 \Rightarrow x = \frac{3}{2}\)
Question 38: Area of the parallelogram formed by the lines \(y = 4x,y = 4x + 1,x + y = 0\) and \(x + y = 1\) is
[a] \(1/5\)[b] \(2/5\)
[c] 5
[d] 10
If a parallelogram is made by the set of 2 parallel lines \({\ell _1},\;{\ell _2}\) and \({\ell _3},\;{\ell _4}\), then area of the parallelogram is given by the formula \(\frac{{{d_1}{d_2}}}{{\sin \theta }}\), where \({d_1}\) is the distance
between the lines \({\ell _1},\;{\ell _2}\) and \({d_2}\) is the distance between the lines \({\ell _3},\;{\ell _4}\) and \(\theta \)is the angle between the lines.
Here \({d_1} = \frac{1}{{\sqrt {{4^2} + {1^2}} }} = \frac{1}{{\sqrt {17}
}}\), \({d_2} = \frac{1}{{\sqrt {{1^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }}\)
\(\tan \theta = \left| {\frac{{4 - ( - 1)}}{{1 - 4}}} \right| = \frac{5}{3}\) or \(\sin \theta = \frac{5}{{\sqrt {34} }}\)
Area = \(\frac{{\frac{1}{{\sqrt {17}
}} \times \frac{1}{{\sqrt 2 }}}}{{\frac{5}{{\sqrt {34} }}}} = \frac{1}{5}\)
Alternately, we can solve all the four intersection points and calculate the area of parallelogram.
Question 39: let \(a,\;b,\;c\) be distinct non-negative numbers. If the vectors and lie in a plane, then \(c\) is
[a] The Arithmetic Mean of \(a\) and \(b\)[b] The Geometric Mean of \(a\) and \(b\)
[c] The Harmonic Mean of \(a\) and \(b\)
[d] Equal to zero
Given that the vectors are coplanar, hence
\(\left| {\begin{array}{*{20}{c}}a&a&c\\1&0&1\\c&c&b\end{array}} \right| = 0\)
Using \({C_1} = {C_1} - {C_2}\)
\(\left| {\begin{array}{*{20}{c}}0&a&c\\1&0&1\\0&c&b\end{array}}
\right| = 0 \Rightarrow - 1({b^2} - ac) = 0\)
Hence \(b\) is the geometric mean of \(a\) and \(b\).
Question 40: If \({\cos ^{ - 1}}\frac{x}{2} + {\cos ^{ - 1}}\frac{y}{3} = \phi \), then \(9{x^2} - 12xy\cos \phi + 4{y^2}\) is equal to
[a] \( - 36{\sin ^2}\phi \)[b] \(36{\sin ^2}\phi \)
[c] \(36{\cos ^2}\phi \)
[d] 36
Given that \({\cos ^{ - 1}}\frac{x}{2} + {\cos ^{ - 1}}\frac{y}{3} = \phi \)
\( \Rightarrow {\cos ^{ - 1}}\left( {\frac{{xy}}{6} - \sqrt {1 - \frac{{{x^2}}}{4}} \sqrt {1 - \frac{{{y^2}}}{9}} } \right) = \phi \)
\( \Rightarrow \frac{{xy}}{6}
- \frac{{\sqrt {(4 - {x^2})(9 - {y^2})} }}{6} = \cos \phi \)
\( \Rightarrow (4 - {x^2})(9 - {y^2}) = {(6\cos \phi - xy)^2}\)
\( \Rightarrow 9{x^2} - 12xy\cos \phi + 4{y^2} = 36{\sin ^2}\phi \)
Question 41: The area enclosed within the curve \(|x| + |y| = 2\) is
[a] 16 sq. unit[b] 24 sq. unit
[c] 32 sq. unit
[d] 8 sq. unit
Plot the graph \(|x| + |y|\, = 2\), we get a square of side having vertices (2, 0), (–2, 0), (0, 2) and (0, – 2). Area of the square = 4×Area of one triangle = 4×2 = 8
Question 42: For \(a \in R\) (the set of all real numbers), \(a \ne - 1\), \(\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {{1^a} + {2^a} + \cdots \cdot + {n^a}} \right)}}{{{{(n + 1)}^{a - 1}}[(na + 1) + (na + 2) + \cdots \cdot + (na + n)]}} = \dfrac{1}{{60}}\). Then one of the values of \(a\) is
[a] 5[b] 8
[c] \( - 15/2\)
[d] \( - 17/2\)
The function can be written as
\(\mathop {\lim }\limits_{n \to \infty } \frac{{{n^a}\sum\limits_{r = 1}^n {{{\left( {\frac{r}{n}} \right)}^a}} }}{{{{(n + 1)}^{a - 1}}n\sum\limits_{r = 1}^n {\left( {a + \frac{r}{n}} \right)} }} = \frac{1}{{60}}\)
\(
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \,\,{\left( {\frac{n}{{n + 1}}} \right)^{a - 1}}\frac{{\sum\limits_{r = 1}^n {{{\left( {\frac{r}{n}} \right)}^a}} }}{{\sum\limits_{r = 1}^n {\left( {a + \frac{r}{n}} \right)} }}\)
\( =
\mathop {\lim }\limits_{n \to \infty } \,\,\frac{{\sum\limits_{r = 1}^n {{{\left( {\frac{r}{n}} \right)}^a}} }}{{\sum\limits_{r = 1}^n {\left( {a + \frac{r}{n}} \right)} }} = \frac{{\int\limits_0^1 {{x^a}dx} }}{{\int\limits_0^1 {(a + x)dx}
}}\)
\( = \frac{2}{{(2a + 1)(a + 1)}}\),
Given that \(\frac{2}{{(2a + 1)(a + 1)}} = \frac{1}{{60}}\), solving this we get, \(a = 7,\; - \frac{{17}}{2}\)
Question 43: The function \(f(x) = \left\{ {\begin{array}{*{20}{c}}{{{(1 + 2x)}^{\frac{1}{x}}},}&{x \ne 0}\\{{e^2},}&{x = 0}\end{array}} \right.\), is
[a] Differentiable at \(x = 0\)[b] Continuous at \(x = 0\)
[c] Discontinuous at \(x = 0\)
[d] Not differentiable at \(x = 0\)
Using the result \(\mathop {\lim }\limits_{x \to 0} {\left( {1 + kx} \right)^{\frac{1}{x}}} = = {e^k}\).
The value of the function \(f(x) = {\left( {1 + 2x} \right)^{\frac{1}{x}}}\) when \(x \to 0\), is : \({e^2}\)
Also given that \(f(0)
= {e^2}\)
To check differentiability of the function, let \(y = {\left( {1 + 2x} \right)^{\frac{1}{x}}} \Rightarrow \log y = \frac{1}{x}\log (1 + 2x)\)
\( \Rightarrow \log y = \frac{1}{x}\left( {2x - \frac{{4{x^2}}}{2} + ....} \right)
= 2 - 2x + ...\)
Hence \(y = {e^{2 - 2x + ...}} = {e^2}{e^{ - 2x + ..}} = {e^2}(1 - 2x + ...)\)
Now Right hand derivative, \(\frac{{f(0 + h) - f(0)}}{h} = \frac{{{e^2}(1 - 2h + ...) - {e^2}}}{h} = - 2{e^2}\)
Similarly we can show
that Left hand derivative is also \( - 2{e^2}\).
Therefore the function is differentiable at \(x = 0\)
Question 44: Which of the following is NOT TRUE?
[a] \(\mathop {\lim }\limits_{x \to \infty } \frac{x}{{{e^x}}} = 0\)[b] \(\mathop {\lim }\limits_{x \to 0 + } \frac{1}{{x{e^{1/x}}}} = 0\)
[c] \(\mathop {\lim }\limits_{x \to 0 + } \frac{{\sin x}}{{1 + 2x}} = 0\)
[d] \(\mathop {\lim }\limits_{x \to 0 + } \frac{{\cos x}}{{1 + 2x}} = 0\)
The fourth choice is not correct as the limit \(\mathop {\lim }\limits_{x \to 0 + } \frac{{\cos x}}{{1 + 2x}} = 1\)
Question 45: Given that
\(\hat a = \lambda \hat \imath + \hat \jmath - 2\hat k,\hat b = \hat \imath + \lambda \hat \jmath - 2\hat k,\,\,\hat c = \hat \imath + \hat \jmath + \hat k\) and \([\hat a\hat b\hat c]
= 7\), then the values of \(\lambda \) are
[a] 2, – 6[b] 6, – 2
[c] 4, – 2
[d] – 4, 2
Given that \([\hat a\hat b\hat c] = 7\)
\( \Rightarrow \left| {\begin{array}{*{20}{c}}\lambda &1&{ - 2}\\1&\lambda &{ - 2}\\1&1&1\end{array}} \right| = 7\)
\( \Rightarrow \lambda \left( {\lambda + 2} \right) - 1\left(
{1 + 2} \right) - 2\left( {1 - \lambda } \right) = 7\)
or \({\lambda ^2} + 4\lambda - 12 = 0\)
\( \Rightarrow \left( {\lambda - 2} \right)\left( {\lambda + 6} \right) = 0\)\( \Rightarrow \lambda = 2,\; - 6\)
Question 46: The \({10^{{\rm{th}}}}\) and \({50^{{\rm{th}}}}\) percentiles of the observations 32, 49, 23, 29, 118 respectively are
[a] 21, 32[b] 23, 32
[c] 23, 33
[d] 22, 31
We arrange the data is ascending order.
\(23,29,32,49,118\quad n = 5\) observations
\({P_{50}} = 50\frac{{(n + 1)}}{{100}} = \frac{{50}}{{100}} \times 6 = {3^{{\rm{rd }}}}{\rm{ observations }}\)
\({P_{50}} = 32,{P_{10}} = \frac{{10}}{{100}}
\times 6 = \frac{6}{{10}} = 0.6 = {1^{{\rm{st }}}}{\rm{ observation }}\)
\({P_{10}} = 23\)
Question 47: A survey is done among a population of 200 people who like either tea or coffee. It is found that 60 % of the population like tea and 72% of the population like coffee. Let x be the number of people who like both tea and coffee. Let m ≤ x ≤ n , then choose the correct option-
[a] n – m = 56[b] n – m = 28
[c] n – m = 32
[d] n + m = 92
Suppose population who like tea is \(n\left( T \right)\) and population who like coffee \( = n\left( C \right)\)
population who like either tea or coffee \( = n\left( {T \cup C} \right) \le 200\)
Population of who like tea \(n\left( T
\right) = \frac{{60}}{{100}} \times 200 = 120\)
Population who like coffee \(n\left( C \right) = \frac{{72}}{{100}} \times 200 = 144\)
\(n\left( {T \cup C} \right) = n\left( T \right) + n\left( C \right) - n\left( {T \cap C} \right)\)
\(n(T \cup C) = 120 + 144 - n\left( {T \cap C} \right)\)
\(n\left( {T \cap C} \right) = 264 - n(T \cup C)\)
As \(144 \le n(T \cup C) \le 200\), hence maximum and minimum values of \(n(T \cap C) = 120,\;64\) and the difference in the
values = 56.
Question 48: If \({\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} = 1,(a > b)\) and \({x^2} - {y^2} = {c^2}\) cut at right angles, then
[a] \({a^2} + {b^2} = 2{c^2}\)[b] \({b^2} - {a^2} = 2{c^2}\)
[c] \({a^2} - {b^2} = 2{c^2}\)
[d] \({a^2} - {b^2} = {c^2}\)
The given curves are \({\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} = 1\) and \({x^2} - {y^2} = {c^2}\), since these curves are intersecting at right angle, so the values of \(\frac{{dy}}{{dx}}\) at the point of intersection
will be of opposite sign and reciprocal of each other.
differentiating first equation w.r.t. \(x\), we get
\(\frac{{2(x)}}{{{a^2}}} + \frac{{2y}}{{{b^2}}}\frac{{dy}}{{dx}} = 0\) \( \Rightarrow \frac{{dy}}{{dx}} = \frac{{ - x{b^2}}}{{{a^2}y}}
= \frac{{ - {b^2}}}{{{a^2}}}\frac{x}{y}\)
differentiating second equation w.r.t. \(x\),
\(2x - 2y\frac{{dy}}{{dx}} = 0\)\( \Rightarrow \frac{{dy}}{{dx}} = \frac{x}{y}\)
Since both curves cut at right angles
\( - \left( {\frac{{{b^2}}}{{{a^2}}}\frac{x}{y}}
\right)\left( {\frac{{{x^2}}}{{{y^2}}}} \right) = - 1\)\( \Rightarrow \frac{x}{y} = \frac{a}{b}\)
Put \(x = ak,\;y = bk\) in both the equations and eliminate \(k\),
\({\left( {\frac{{ak}}{a}} \right)^2} + {\left( {\frac{{bk}}{b}} \right)^2} = 1\) and \({(ak)^2} - {(bk)^2} = {c^2}\)
Eliminating \(k,\) we get \({a^2} - {b^2} = 2{c^2}\)
Question 49: A four-digit number is formed using the digits 1,2,3,4,5 without repetition. The probability that it is divisible by 3 is
[a] \(\frac{1}{3}\)[b] \(\frac{1}{4}\)
[c] \(\frac{1}{5}\)
[d] \(\frac{1}{6}\)
Total no. of ways of forming four-digit numbers from the set 1, 2, 3, 4,5 is \(^5{{\rm{C}}_4} \times 14 = 120\)
We know that if the no is divisible by 3 then sum of its digits should be multiple of 3 .
So, only 1 case (1, 2, 4, 5) is possible.
Total no. of favourable cases is 4! = 24
Required probability is \( = \frac{{24}}{{120}}\)
Question 50: A straight line through the point (4, 5) is such that its intercept between the axes is bisected at A, then its equation is
[a] \(3x + 4y = 20\)[b] \(3x - 4y + 7 = 0\)
[c] \(5x - 4y = 40\)
[d] \(5x + 4y = 40\)
Since mid-point A, is (4, 5), so line intercepts at x axis at (8, 0) and y axis at (0, 10).
Hence the equation of line is:
\(\frac{x}{8} + \frac{y}{{10}} = 1\) \( \Rightarrow 5x + 4y = 40\)